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I. Resumen y conclusiones

El tema central de esta tesis son los efectos que tiene el caos sobre las operaciones comerciales.
Con el fin de explicar este tema en mayor detalle, esta introduccion consta de dos secciones que
explican las operaciones comerciales y el caos. Para aquellas personas que leen muy rdpido, se
resume el objetivo de esta tesis y el resultado a continuacién:

El punto de partida es el trabajo que realizé Edward Lorenz acomienzos de la década de 1960 en el
Instituto de Tecnologia de Massachusetts. Por razones obvias, el prondstico del tiempo es casi tan
antiguo como la humanidad. El prondstico del tiempo contemporaneo funciona de la siguiente
manera. La persona tiene que determinar los datos climaticos del dia (la temperatura, la presion
atmosférica, etc.), emplear las leyes de la termodinamica y la mecanica clésicas y calcular cudl va a
ser el clima partiendo de esa informacién. Desde un punto de vista puramente fisico es aburrido
porque las leyes de la termodindmica y la mecdnica cldsicas necesarias tienen siglos de
antigliedad, y hasta este momento nadie duda de su validez en esta area; es mas, no hay motivos
para hacerlo. Calcular el clima del dia siguiente, sin embargo es sumamente tedioso. Incluso al dia
de hoy existen muy pocas herramientas informaticas disponibles y se sabe que los pardmetros de
entrada (el clima de hoy) son demasiado imprecisos. Por lo tanto, el prondstico del tiempo a mas
largo plazo fue posible cuando aparecieron los ordenadores. Esta claro que parametros de entrada
diferentes conducen a prondsticos diferentes, pero Edward Lorenz hizo una observacion curiosa
siendo pionero en el drea: cambiar poco los pardmetros de entrada casi no influenciaba el
prondstico del tiempo en el corto plazo, como todo el mundo esperaria, pero en el largo plazo, lo
cambiaba radicalmente, incluso la modificacién mds sutil podia producir una diferencia en si
lloviera en 30 o 31 dias. Hasta el movimiento aéreo de una mariposa podia cambiarlo. Asi nacio la
expresion "efecto mariposa". Por el contrario, los promedios espaciales y temporales son
sumamente constantes. En los Ultimos 50 afios, la temperatura promedio de la superficie de la
Tierra aumento una fraccidén de un punto porcentual, y estamos (correctamente) preocupados al
respecto. Sin el efecto invernadero, el cambio seria mucho menor o la temperatura promedio
seria mucho mas constante.

Ambos efectos, 1) la imposibilidad de realizar un prondstico del tiempo a largo plazo y 2) la
constancia de las cantidades promedio, se entienden perfectamente. El efecto mariposa es la
consecuencia del caos (matematico). La constancia de las cantidades promediadas se relaciona
con las leyes de conservacion, por ejemplo, la conservacién de la energia. Se puede encontrar una
introduccién a este tema en la segunda seccidn del prélogo y un estudio detallado en el Capitulo Il.

Sin embargo, esta tesis no trata ni de meteorologia ni de fisica, trata de negocios y economia. Se
podria decir que una tarea importante de la funcidon de un gerente o un economista es la del
realizar "prondsticos y planificar", y dicha tarea estd estrechamente vinculada al pronéstico del
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tiempo. No tanto por la técnica o las ecuaciones que se emplean, sino por el proceso
metodoldgico. Se han de tomar parametros de entrada, como las cifras de las ventas, los costes,
etc. del dia, para después "calcular" cifras de futuro relevantes, como los ingresos del préoximo
afio, por ejemplo. Las comillas en la palabra "calcular" se deben a que no son ecuaciones rigurosas
como las de la meteorologia, de todos modos, existen ecuaciones o pueden ajustarse por medio
de modelos de regresion en los que se da pie a ciertos errores de “prondstico”. Con bastante
frecuencia, se programan medianteun software informatico, por lo tanto, existe al menos una
posibilidad de que ocurran cosas como el efecto mariposa en los negocios y la economia. Y sin
duda, ocurren. Entonces, existe un umbral (natural) que indica cudn largo o detallado puede ser un
plan o un prondstico. Reconocer dicho umbral es esencial y también es el objetivo fundamental de
esta tesis. Al encontrarse con una situacién cadtica en los negocios o en la economia, se debe
buscar la manera de describirla; una posibilidad, como lo demuestra esta tesis, es el uso de las
cantidades conservadas.

El resto de la tesis se organiza de la siguiente manera. El Capitulo Il contiene la parte tedrica de la
tesis; resume los efectos del caos matematico y las leyes de conservacidn lo necesario para poder
comprenderla. En la primera afirmacion, en la pagina 27, se resume el resultado principal: las
cantidades conservadas no pueden exhibir un comportamiento caético. También aporta la
relacion con los negocios con un segundo resultado importante, como se explica en la segunda
afirmacidén, en la pagina 34: existe una cantidad conservada en los negocios y la economia. Para
probar esto se han empleado los andlisis realizados por Sato y Ramchandran (2014). El Capitulo Il
también puede considerarse una parte importante de la tesis ya que contiene, y resuelve, un caso
especifico en el que se aplican los resultados tedricos. Se analizan cuatro situaciones comerciales
diferentes para estudiar los efectos del caos y las cantidades conservadas subyacentes. Se
demuestra que la ubicacidn dptima de un depdsito puede presentar efectos cadticos, por lo tanto,
(en general) es inutil determinarla. Por el contrario, el costo del depdsito es una cantidad
conservada y no muestra efectos cadticos. En la Seccion 2 del Capitulo Ill, se aplica un modelo de
curva de aprendizaje en dos partes para pronosticar las cifras de venta de un producto nuevo.
Puede demostrarse que el desarrollo (oportuno) de la participacion en el mercado no puede
predecirse porque tiene un comportamiento caético, a diferencia de la participacidn final en el
mercado, que no presenta caos porque es una cantidad conservada. En la Seccion 3 del Capitulo
I, se analiza el modelo de difusidn de la comercializacion (es un modelo estandar para calcular el
desarrollo en el mercado de un producto nuevo). Se publicd en base a una evidencia de la
presencia de caos en el modelo de difusién ya en 19932 Aqui se demuestra que los efectos
cadticos aparentes se deben a una incomprensién matematica. La correccidon de estos errores
hace que desaparezcan los efectos cadticos y simplifica el uso del modelo de difusidn. En la cuarta
seccion del Capitulo Il se demuestra que un mercado financiero tipico nunca es estable y por lo
tanto presenta un comportamiento cadtico. La tercera afirmacidn relevante se recoge en la

! Sato, R. and Ramchandran, R. (2014).-“Conservation Laws and Symmetry: Applications to Economics and
Finance”, Springer
2 Weiber, R. (1993).- “Chaos: Das Ende der klassischen Diffusionsmodellierung”, Marketing ZFP, 1, 35-46.
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pagina 66 y la constituye el motivo por el que la especulacion nunca puede conducir a la
ganancia en el largo plazo.
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1. La situacion inicial en las operaciones

Como se menciond anteriormente, las predicciones cuantitativas son esenciales en los negocios y
la economia, de ellas derivan los planes para el futuro y a menudo son las entradas fundamentales
gue requieren una estrategia a largo plazo. Los resultados de las ciencias de la gestién y, mas
especificamente, el uso de ordenadores facilitan la posibilidad de hacer predicciones cuantitativas.
Hasta aqui es absolutamente andlogo al prondstico del tiempo. Ya sea en la fisica, los negocios o la
economia, se supone que el mundo es determinista. Cabe destacar que si algo no es determinista,
ocurrird de casualidad. Si algo es determinista, las personas tratan de averiguar qué causas tienen
qué efectos. En la fisica, existen dos leyes elementales, son basicamente conocidas, como seria el
caso de la ecuacién de Newton en combinacion con la de Maxwell’. En los negocios y la economia,
la humanidad estd apartada. En parte, existen algunos indicios que las explican y, en parte,
mayormente hay reglas empiricas. Por lo tanto, si un modelo de negocios o econémico no
conduce a un resultado apropiado, existen dos motivos posibles:

Los parametros de entrada son incorrectos o imprecisos.
El método de prediccidn no es bueno o es menos preciso en el largo o corto plazo.

En cuanto a sus respectivos efectos, ambos motivos son indistinguibles. Esto puede considerarse
un grave problema, pero hace hincapié en el hecho de que es muy importante considerar el rango
de validez de todo resultado. Todo estudiante de Fisica aprende en su primer afio que cualquier
cantidad medida tiene un margen de error. Si, como minimo, no se tiene esto en cuenta, la
cantidad medida es completamente inutil. Cuando se incluye este margen de error, cualquier
modelo de fisica obtiene su rango de validez, puede considerarse evidente, y de hecho lo es. Lo
sorprendente es que rara vez se utiliza fuera del campo de la fisica. Ni siquiera en la economia es
facil encontrarlo. A veces aparecen predicciones como "el PBI crecerd entre el 2,6 % y el 3,2 % el
proximo afio", pero ni siquiera ese suele ser un margen de error real, en general es el diferencial
del prondstico realizado en forma independiente por distintas instituciones. En especial en los
negocios a veces existe una mala interpretacion de las estadisticas. Se escuchan afirmaciones del
tipo "esta estrategia es correcta en un 80 %", lo que significa que es bastante apropiada en el 80 %
de los casos, pero en el 20 % de los casos puede ser un disparate absoluto. Dicha interpretacion
contiene dos errores fundamentales. En primer lugar, no existen 100 situaciones comerciales
idénticas y 80 estan yendo por un camino y 20 por otro. En segundo lugar, si un modelo o
procedimiento a veces estd equivocado, en general esta equivocado. jCon un contraejemplo es
suficiente para falsear una teoria!

A partir de esta informacién, debe quedar claro que rara vez se observan los efectos cadticos en
los negocios y la economia. Si algo tiene un resultado completamente diferente, aunque la
configuracién inicial fuera casi idéntica, se podriaafirmar que es una situacién en la que el modelo
no es correcto.
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2. El efecto del caos matematico en los modelos de negocios

El caos se da cuando las causas pequefias tienen efectos grandes. Hace mas de cien afios, los
matematicos encontraban funciones como f(x) presentada en la ecuacion [ 3 ] de la pagina 17. En
general, si el argumento de una funcidn (aqui x) varia poco, f(x) (el resultado) también varia muy
levemente. Pero en la funcién mencionada anteriormente tenemos una situacién en la que
|f(x) - f(x+ ) | siempre estard en promedio % completamente independiente de . Esto es
particularmente sorprendente para muy pequefios. Si se supone un parametro de entradaa xy
un parametro de salida a f(x), desde un punto de vista tedrico, el resultado es estrictamente
determinista. Sin embargo, como se menciond en la seccién anterior, toda cantidad medida tiene
un margen de error. Incluso en el caso de que fuera arbitrariamente pequefio, el resultado
siempre varia %. Es decir, en todas las situaciones practicas el resultado solo puede determinarse
con esta precision (que es bastante grande porque f(x) permanece entre 0 y 1 en este caso. En
otras palabras, tenemos un margen de error de 50 %.) Por lo tanto, si algo esta regido por dicha
funcién, no puede haber predicciones precisas. Como voy a demostrar mas adelante, la antes
mencionada f(x) describe la cantidad de dinero de una cuenta bancaria (manejada de forma
extrafa) (para conocer mas detalles, ver la subseccion 3.1 del Capitulo Il). Esta es la evidencia mas
antigua de la presencia de caos en una situacién comercial (en este caso, en contabilidad). Sin
embargo, ha sido sefialada por un matematico, Peitgen y Richter (1984)3, no por un economista ni
un profesional de las ciencias de la gestion.

Cabe destacar que dichos efectos pueden aparecer fuera del mundo de las férmulas y las
matemadticas. A modo de ejemplo, consideraremos un congreso anual. La fecha limite para
presentar los trabajos es el 30 de junio a las 12 horas (en punto). Exactamente a las 12 horas del
30 de junio nos encontramos con un comportamiento muy caético. El trabajo aparecera un afo
mas tarde o antes dependiendo de si se presentd una milésima de segundo antes o después. En
las situaciones comerciales, la planificacion se hace aplicando algunas férmulas matematicas y
algunas reglas, como por ejemplo, la fecha limites es... Por lo que es sumamente probable que se
desarrolle el caos. Por el contrario, Peitgen y Richter (1984)3 fue el primero en someter a debate
un ejemplo de contabilidad. Quizas porque es bastante artificial, nunca triunfé en el mundo de los
negocios. Mas tarde, Weiber (1993)* expuso que un modelo estandar de investigacién de mercado
cuantitativa (en este caso, el modelo de difusién) puede presentar caos y es por lo tanto de uso
limitado. Dichas noticias deberian haber sido un problema muy serio para el modelo de difusion,
pero sorpresivamente no lo fueron. Todavia hoy se sigue usando el mismo modo. Es mas
sorprendente auin que los efectos cadticos de Weiber (1993)* desaparecen por completo si se usa

3 peitgen, H.O.; Richter, P. H. (1984).- “Harmonie in Chaos und Kosmos”, “Morphologie komplexer Grenzen;
Bilderaus der Theorie dynamischer Systeme”, Universitdt Bremen, Forschungsschwerpunkt dynamische
Systeme

4Weiber, R. (1993).- “Chaos: Das Ende der klassischen Diffusionsmodellierung”, Marketing ZFP, 1, 35-46.
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la matematica correcta en el modelo de difusion. Esto se demuestra en la Seccion 3 del Capitulo 11l
de esta tesis. (Si se usa la matematica correcta es mucho mas facil aplicar el modelo de difusion,
pero al dia de hoy se sigue usando una matematica incorrecta, lo que como maximo da una
aproximacion.)

Ademas de los enfoques sobre el caos en los negocios del Ultimo parrafo, fue Grabinski (2004)°
quien notd las consecuencias del caos matematico en los negocios y la economia. Mas tarde,
Grabinski (2007, 20087) ofrecié algunos indicios mas detallados y demostré el efecto del caos en
el almacén éptimo si hay solamente dos clientes. Este fue el punto de partida de esta tesis, en la
Seccidn 1 del Capitulo Il, lo extendi hasta tres clientes y mas.

Si hay presencia de caos, es inutil seguir calculando valores para cantidades que varian
cadticamente. Appel y Grabinski (2011)%, ademas de Appel, Dziergwa y Grabinski (2012)° utilizaron
cantidades conservadas para describir situaciones caéticas en mercados financieros, este fue mi
punto de partida para demostrar las leyes de conservacion en los negocios y la economia (ver
subseccion 3.2 del Capitulo II). En situaciones comerciales en las se encuentra caos a lo largo de la
investigacion, se busca, asimismo, cantidades conservadas y se demuestra de forma explicita que
no varian caéticamente.

> Grabinski, M. (2004).- “Is there ‘chaos’ in management or just chaotic management?”, Complex Systems,
Intelligence and Modern Technology Applications, Paris.

6 Grabinski, M. (2007).- “Management methods and tools: Practical know-how for students, managers, and
consultants”, GablerVerlag, Wiesbaden.

7 Grabinski, M. (2008).- “Chaos — limitation or even end of supply chain management”, High Speed Flow of
Material, Information and Capital, Istanbul.

8Appel, D.; Grabinski, M. (2011).- “The origin of financial crisis: A wrong definition of value”, PJQM Vol. 3.
Appel, D.;Dziergwa, K.; Grabinski, M. (2012).- “Momentum and reversal: An alternative explanation by non-
conserved quantities”,Int. Jour.Of Latest Trends in Fin. & Eco. Sc., 2 1, p. 8.
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3. Conclusiones y otras investigaciones

A modo de conclusién, existen muchas mas dreas en las que se deberian analizar los efectos
cadticos. En este caso, haré hincapié en las implicaciones de las investigaciones aplicadas
realizadas por companiias, bancos, consultoras, etc. Aunque es posible que existan otras areas de
la economia en la que se produzcan este tipo de situaciones, pretendo poner el foco solamente en
dos: los efectos sobre el software (desarrollo y uso) y la repercusidon en las estrategias de las
empresas.

3.1 Los efectos sobre el software

Esta tesis presenta los efectos cadticos en las operaciones logisticas, como la planificacion de
depdsito y la planificacion tal como se realiza en comercializacidon. Los calculos se realizan,
primero, derivando primero el algoritmo y, después, de forma individual. En las situaciones
comerciales, todo esto se efectla con un software adquirido en el mercado. Los sistemas de
planificacidon de los recursos de la empresa (ERP, por sus siglas en inglés), como SAP, se utilizan
para las operaciones elementales y cotidianas, pero para la ubicacién éptima de almacenes
también existen programas prefabricados, por lo tanto, los desarrolladores y los usuarios de
software deben ser conscientes de los posibles efectos cadticos.

En la parte principal de mi tesis, menciono el tiempo de calculo prolongado (tiempo de CPU) para
los computos en presencia de caos. En la figura 9, por ejemplo, se utilizaron unas 100 horas de
tiempo de CPU en una potente estacidén de trabajo. Esto se debe de forma fundamental a la alta
precision que se requiere en un régimen cadtico. Por lo tanto, un programa estandar (ya sea Excel
o SAP) nunca obtendra resultados verdaderos en presencia de caos. A primera vista, no parece un
gran obstaculo. En un régimen cadtico, todo resultado es completamente indtil, por lo tanto, no es
necesario conocerlo con exactitud. Parece ser aleatorio. Bien sea que estos "numeros aleatorios"
sean producidos por cdlculos sumamente precisos o en parte por el efecto de un software
impreciso podria ser algo de interés puramente académico. Sin embargo, el software estandar
produce resultados finales, como el tiempo de amortizacién,y al usuario solo le interesa este
numero final. Con el fin de calcular este nimero, el software en uso realiza varios pasos (en
general, son muy diversos; de lo contrario, no seria necesario usar un software). Tal vez algunos de
los numeros que se producen en los procesos entre medias muestren un comportamiento cadtico
y,por lo tanto, el resultado (sea o no cadtico) estara probablemente equivocado.
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Con el fin de analizar este punto con mayor claridad, tomo una cuenta bancaria (caodtica)
manejada de manera extrafia. Para conocer mas detalles, ver la subseccion 3.1 del Capitulo II. Alli,
la figura 12 de la pagina 30 muestra el balance de la cuenta después de cada periodo. Parece ser
un numero completamente aleatorio. Calcular este nimero aleatorio es un desafio numérico. Si se
hubiera realizado el calculo con, por ejemplo, Excel, la imagen se veria igual de aleatoria, pero los
detalles serian completamente diferentes (se aprecia un efecto similar en la figura 7 de la pagina
21, aunque este es puramente matematico). Después de 120 periodos, hay, por ejemplo,
817.959,10 euros en la cuenta en realidad, mientras que un célculo de Excel reporta 580.250,92
euros. Por supuesto que a nadie le interesan los detalles de la figura 12. Sin embargo, como se
argumenta en la subseccion 3.1 (del Capitulo 1l), el dinero total retirado de la cuenta (mas el
interés) es una cantidad conservada, por lo tanto, no debe fluctuar cadticamente, pero de hecho
lo hace, lo que se muestra en 13 de la pagina 31. Es bdsicamente la suma de los puntos cadticos de
la figura 12. El calculo se realizé con una gran precision. Si no se hubiera empleado tanta precision,
la figura 13 también podria mostrar un comportamiento caético.

En sintesis, existen algunas lecciones importantes para los desarrolladores de software:

En cada paso dentro del algoritmo, debe quedar claro si es posible que existan efectos
cadticos o no.

El software debe probarse para comprobar la existencia de efectos cadticos en el
resultado final y en todos los resultados internos.

Lo mejor es usar cantidades conservadas solo cuando sea posible.

Es muy importante que los usuarios del software sean conscientes del caos. Como mencioné
antes, usar el programa Excel para calcular el balance de cuenta de la subseccién 3.1 (del
Capitulo 1) es muy simple pero el resultado eserroneo. En todo tipo de planificacidén o prediccion,
siempre se debe suponer un margen de error en los datos introducidos. Se puede suponer una
distribucion de Gauss con un ancho normal. (Esto es completamente andlogo al procedimiento de
la subseccidn 2.2 del Capitulo Ill.) Es necesario tener en cuenta que la distribucién de datos no
suele comportarse como la distribucion de Gauss y que puede depender de la situacién en
particular. Sin embargo, este comentario, por lo demds importante, no tiene relevancia en este
caso. Siempre se puede escoger una distribucién de Gauss (o cualquier otra que sea conveniente).
Variar los datos introducidos de este modo conducira a una variacion en los datos de salida. Si el
resultado varia con la misma distribucién, y su ancho adquiere el mismo orden de magnitud, no
hay caos. De todos modos, es necesario realizar dicho analisis, incluso si el caos queda excluido
porque, por ejemplo, se utilizan cantidades conservadas. El analisis produce el margen de error en
los datos de salida. Y sin el margen de error, cualquier resultado es inservible.

Si dicho analisis produce efectos caédticos (cuando la distribucion de salida es aleatoria), no se
debe tomar en cuenta ningun resultado. Existe la posibilidad de que el algoritmo del software sea
Unicamente cadtico. Se puede probar con software con un algoritmo completamente alterado. Sin
embargo, lo mas probable es que dicho software no esté disponible y se deba considerar que el
caos domina en realidad. Por lo tanto, en este caso no es posible realizar una planificacion y el
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futuro es tan impredecible como el clima en el largo plazo. Usar esos datos aun asi es imprudente.
En este caso, nada es mejor que los datos erréneos. Hay que tener en cuenta que el uso de datos
cadticos ocurre con bastante frecuencia. Para peor, algunas empresas pagan para obtener datos
cadticos. En Gran Bretania, las industrias que dependen del clima, como las del helado, pagan a los
departamentos de meteorologia para obtener un prondstico del tiempo en el largo plazo. Los
departamentos estan encantados con tomar el dinero y entregar algo que es tan util como arrojar
los dados.

Hay que tener en cuenta que para detectar el caos con rigor se necesita mucha potencia de
calculo, la que no suele estar disponible para el usuario del software. Ademas, en la mayoria de los
programas como Excel, no hay posibilidades de aumentar la precision arbitrariamente. Sin
embargo, a veces es posible reducir la precisién. Por ejemplo, si el software tiene una precisién de
dieciséis digitos, se puede reducir a ocho digitos. Todos los resultados (cadticos o no)
permanecerdn idénticos dentro de los primeros digitos, de lo contrario, algo estd mal. Si son
idénticos, no es prueba de que exista la precision suficiente, pero es un indicio de que lo mas
probable es que esté bien.

Para resumir, estas son algunas recomendaciones para los usuarios de software:

Tratar de usar y considerar Unicamente cantidades conservadas.

Variar siempre los datos introducidos y ver qué sucede con los datos de salida. Ademas del
caos, se deriva el margen de error.

Realizar todos los calculos dos veces: con la precision estandar y con la mitad de la
precision estandar. Se deberian obtener resultados al menos muy similares.

Para cerrar esta subseccidn, se recogen algunos comentarios para los usuarios de software y los
desarrolladores. Variar los datos introducidos dentro de una distribucién de Gauss es sencillo pero
puede ser sumamente tedioso. La posibilidad de "hacerlo a mano" queda excluida en la mayoria
de los contextos comerciales. Por lo tanto, se deberia contar con un software adicional que
produzca una distribucidon de Gauss a partir de una cadena de datos en el formato particular.
Segun tengo entendido, dicho software no esta disponible en el mercado. Por lo tanto, habria que
producirlo o encargéarselo a un fabricante de software especial. Para otros desarrollos de software
estandar, es muy recomendable tener un revisor automatico de caos. Algunos programas (como
Microsoft Project) cuentan con extensiones pero no todos. Producir esas extensiones estaria
dentro de las posibilidades de negocio actuales.
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3.2 Las repercusiones en las estrategias de las
empresas

Esta tesis trata principalmente sobre las operaciones mas que sobre las estrategias. Sin embargo,
las repercusiones mas importantes pueden encontrarse en las estrategias. Basicamente,
demuestro que muchas formas de planificacion en el largo plazo son imposibles debido al caos, lo
que es analogo a la imposibilidad de obtener un prondstico del tiempo en el largo plazo. Pero la
estrategia es un plan o una manera de alcanzar un objetivo en el largo (o mediano) plazo. Y este
objetivo es el resultado de una planificacién en el largo plazo. Por lo tanto, las personas hablan de
"planificacién estratégica” cuando se refieren a la planificacién en el largo plazo (en general un
plan para un par de afos en lugar de un plan mensual).

De este modo, la mayoria de las estrategias puede verse afectada por el caos, excepto
lasestrategias triviales. Con estrategias triviales, me refiero a situaciones en las que el resultado es
evidente de antemano. Por ejemplo, la industria militar suiza tiene un solo cliente: el Ministerio de
Defensa. Segun se establece en la constitucion, el Ministerio de Defensa tiene que comprar
productos suizos. En general, producen sistemas de armas avanzados con autorizacion, por lo que
no sorprende que la industria militar suiza pueda planificar sus ingresos con una precision de 1%
a lo largo de cinco afios. No hay efectos caodticos, pero la estrategia de planificacion puede
considerarse una farsa de todos modos.

Para ver los efectos cadticos en estrategias "comunes", presentaré un ejemplo. Con el fin de
encontrar una estrategia apropiada, las empresas planifican, por ejemplo, los ingresos de A, B, y C
durante los préximos dos afios. "A" pueden ser los ingresos propios y "B" y "C" los ingresos de dos
competidores importantes. (Alternativamente, A, B y C pueden representar los ingresos de tres
productos diferentes.) Existen seis posibilidades:

1. A>B>C uno mismo es el mayor, y B es mayor que C
2. A>C>B uno mismo es el mayor, y C es mayor que B
3. B>A>C B es el mayor, y uno mismo esta en el medio
4, C>A>B C es el mayor, y uno mismo estd en el medio
5. B>C>A B es el mayor, y uno mismo es el menor

6. C>B>A C es el mayor, y uno mismo es el menor

Dependiendo de cual de los seis escenarios sea el mas probable en el futuro, se necesitan hasta
seis estrategias diferentes. En el caso de cinco o seis, probablemente sea mejor ser lider en
calidad, mientras que en el caso de uno o dos, ser lider en precio no estd mal. Por lo tanto, uno
puede tratar de planificar o estimar los ingresos de A, B y C para los préximos diez afios a fin de
escoger una estrategia adecuada. Esta es la tarea habitual de un gerente que trata de encontrar
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una estrategia conveniente. (Sin embargo, los modelos reales de un ajuste estratégico suelen ser
mas avanzados e involucran mas cantidades que planificar,pero con esta simplificacion alcanza
para ver el punto.)

Fue Grabinski (2007)® quien noté que cada cantidad tiene un margen de error y lo mismo ocurre
con una cantidad planificada, como los ingresos. Usando un modelo de una ecuacién diferencial
simple, Grabinski (2007)® descubrié que la incertidumbre (= margen de error) en una planificacién
aumenta exponencialmente a lo largo del tiempo. En otras palabras, la incertidumbre de una
planificacion de dos afios no es el doble de alta que la de un afio sino que crece
exponencialmente. Matematicamente, la incertidumbre u (medida, por ejemplo  porcentaje de
error) aumenta de la siguiente manera:

uzuo-(et/f—l) [1]

Aqui t es el tiempo. (t = 2 afios en el caso de un periodo de planificacién de dos afios) es una
constante (dimensidon temporal) que describe un periodo de cambio normal. En el campo de la
Internet los cambios son rapidos, por lo tanto, es pequeiia en este caso, en general, menor que
un ano. En el caso de la industria militar suiza, los cambios en el mercado son muy lentos, por lo
tanto, es muy grande (muchos afos). El prefactor up determina la fuerza de la incertidumbre.
Mientras que es determinada por el entorno (mercado), u, depende de la destreza del
planificador o de la calidad del procedimiento de planificacién. Cabe destacar que dicho aumento
de la incertidumbre también es un efecto cadtico. En un mundo idéntico, todos los resultados
(p.€j., el desarrollo de los ingresos) son idénticos. Sin embargo, existen muchos parametros de
entrada, algunos no se conocen e incluso los que se conocen no se conocen con exactitud, varian
en una cierta (pequefia) cantidad, y esta variacién causa un efecto significativo a lo largo del
tiempo. Por lo tanto, no sorprende que la incertidumbre aumente exponencialmente en el tiempo
en[1],cf. [7] olafigura 8.

plannend revenue
[arbitrary units]

year

2 I [ 8 10

Figura 1: Planificacion de ingresos para A, By C, con el margen de error incluido
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Desde luego que todo esto también es cierto para la planificacion de los ingresos futuros. Los
ingresos no estdn dados por una linea (curva). La linea mas bien aumenta exponencialmente en
ancho como se muestra en la figura 1. Hasta t = 5 afios, se puede estar seguro de que se puede
aplicar A> B > C, luego, empiezan a aparecer los efectos cadticos. En el caso de t = 10 afios no esta
nada claro qué ingresos serdn mayores o menores. En este ejemplo, se podria hacer una estrategia
a cinco afios, pero seria imposible escoger una estrategia a diez afos. Dependiendo de la situacion,
es un problema mas o menos grave. En especial si la estrategia exige decisiones en el largo plazo,
hay que ser muy cauteloso. Es habitual que las distintas estrategias involucren inversiones
inmobiliarias, que operan a una escala temporal de unos 20 afios. En el caso de la figura 1, seria
imposible escoger una estrategia en esas circunstancias, es mejor arrojar los dados.

Si las estrategias en el largo plazo derivan de pardmetros cuantitativos como en el llamado ajuste
estratégico, siempre habria que hacer lo siguiente:

Encontrar el margen de incertidumbre para todos los pardmetros de entrada relevantes.
Determinar un horizonte oportuno en el que no importe la incertidumbre (cinco afios en la
figura 1).

Comparar este tiempo con el tiempo en que una estrategia debe ser vdlida (p.ej., el
tiempo de amortizacion) y decidir si la estrategia tiene sentido o no.

Una fusidn o absorcidn tal vez sea una parte de una estrategia. Como una absorcién es en
términos generales una inversion, todo lo anterior es verdad e importante. Sin embargo, las
fusiones y absorciones presentan algunos problemas adicionales debido al caos y en especial a los
resultados de esta tesis. Se puede ver facilmente si se considera la figura 28, que muestra el valor
del mercado y el valor conservado (real) respaldado por medio del futuro flujo de caja y su precio
de mercado. En primer lugar, una empresa normal que cotiza en la Bolsa esta considerablemente
sobrevalorada en comparacién con el flujo de caja que finalmente produce. En segundo lugar, su
precio de mercado varia cadticamente, por lo que es imposible escoger el momento correcto para
comprarla (del mismo modo que lo es encontrar el momento correcto para colocar el dinero en el
"23" de la ruleta).

Desde esta perspectiva, las fusiones y las absorciones funcionan como hacer apuestas. Esta podria
ser en parte la explicacidén de por qué fracasan con mas frecuencia (alrededor de 2/3 de los casos)
que triunfan (1/3 de los casos). Hay que tener en cuenta que ambos efectos desaparecen si una
empresa paga por la otra otorgando una cierta cantidad de acciones de la nueva empresa
(fusionada). Sin embargo, aunque con frecuencia hay un intercambio de mercancias en las
absorciones, al menos una parte se paga en efectivo. Es mas, una empresa que cuenta con mucho
efectivo deberia usarlo. Y también existen las empresas privadas grandes que desean absorber a
una empresa publica. Considerando mis argumentos anteriores, son pocas las posibilidades que
tienen de lograr una adquisicion exitosa. A modo de ejemplo, se puede tomar a German Schaeffler
KG, propiedad de Maria-Elisabeth Schaeffler y su hijo Georg F. W. Schaeffler en 2010. Intentaron y
consiguieron adquirir Continental AG, un gran fabricante de neumaticos alemdn, ydesde luego,
pagaron en efectivo por las acciones de Continental. Como era de prever, concluyé en un desastre
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financiero porque tuvieron que pagar demasiado por cada accion. Basicamente, pagaron
10 mil millones de euros por algo que al afio siguiente valia 2 mil millones de euros.
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II. Chaos and conserved quantities

The goal of this chapter is to explain the mathematical background of chaos and conservation
laws, as far it is necessary to understand the main part of this thesis. For experts in mathematics
and science the following two sections may be common sense, though the thoughts about
conservation laws are less common than often claimed.

The third section about business situations, chaos and conservations laws is essentially new.
Though chaos and business situations were very much in favor around the 1990s, the validity of
this works are pretty limited (see for example Allen (1990), Nonaka (1988), Weiber (1993)).
Arguably Grabinski (2004) was the first to deliver scientific results in this area. The considerations
about conservation laws in business or better management science are fundamental and new.
They are the direct necessary extension of the work of Gutenberg (1998). He predicted that there
exists a function determining the outcome in business and economics. He never said how this
function looks like and more importantly what are its variables. This is a very fundamental
statement. But because of its generality it has no direct application up to now.

1. Definition of chaos

The word chaos has its linguistic roots in the word Xaol of ancient Greek. Its original meaning was
“empty space.” With the Roman influence the meaning changed to “shapeless”, in the sense that
“God created heaven and earth from chaos.” Order has been taken into place. Therefore, we have
for chaos the modern meaning of “disorder” or “irregularity.” However, though this definition is in
accordance with the mathematical chaos discussed here, it is not what most people understand by
the word chaos. They have something in mind like a “chaotic day.” Which means a terrible day, a
day full of stress. Though this is a common meaning of chaos, it is absolutely not what |
understand by chaos in this entire thesis.

In mathematics functions play an essential role. Consider for example the function f(x) = 3x. For

x = 10 one finds f(10) = 30. Changing x by one percent from 10 to 10.1 will yield f(10.1) = 30.3, and
30.3 is exactly one percent bigger than 30. There are other examples which give less trivial result.
For f(x) = 3x? one finds f(10) = 300 and f(10.1) = 306.03. While x turns one percent bigger, f(x) turns
2.01 % bigger. For f(x) = 3x'° a one percent increase in x means a 10.4622 % increase in f(x).
Though functions change more or less with their arguments, a sufficiently small change of the
argument will give a desired small change of the functional value. Mathematically spoken:
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Vx,z>0 3e>0 L |[f(x+e)—fx)|<z [2]

Though most functions fulfill the condition from [ 2 ], some do not. At first glance that looks like a
mathematical toy with no application whatsoever. And surely it was, when such functions had
been discovered over 100 years ago. (One of the pioneer mathematician in this area was Poincaré
in around 1890.) However, the condition of [ 2 ] is far from being some mathematical toy. From
science to business we have formulas or functions to predict the outcome. If somebody saves

€ 100 for twelve months, he or she will have € 1233.07 if the interest rate is 5 % annually
(compound interest is included in the calculation). If the proceedings should be € 10 more

(€ 1243.07), how much should the interest rate be? This is very easy to predict (6.478 % annually)
though the detailed formula for it is complicated. Everybody dealing with finances should be able
to answer such questions. However, if the “interest function” would not obey [ 2 ] such questions
would be impossible to answer. (An example for a bank account with exactly such properties will
be given in section 3 of this chapter.)

In order to see an example, consider the seemingly simple function

flx) = Tlllrg %* (1 — cos[2™ - arccos(1 — 2+ x)]) [3]

The function is defined for 0 < x < 1. Within this regime, 0 < f(x) < 1 always holds. The limit does

o, n

formally not exist; however, it is understood in a way that there is always a sufficiently large “n” so

f{x)]\

Ok v, B % Moy Sewns S e e pees e,
08 .

06

0.4 i

024 »

00 0 T ™deo T T "Teod T Tsod T UU1000.
T
1000 x

Figure 2: Chaotic function f(x) (n = 10000) (discrete plot with 1000 points, else the line would fill everything)
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Figure 3: Chaotic function f(x) (n = 10000) (discrete plot with 200 points, else the line would fill everything)
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Figure 4: f(x) around x=0.5 0.001 (n = 10000) (discrete plot with 200 points, else the line would fill everything)
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Figure 5: f(x) around x = 0.5 + 0.0001 (n = 10000) (discrete plot with 200 points, else the line would fill everything)

that [ 2 ] does not hold. To see the strange behavior of [ 3 ] set for example. n =10000 and go from
x=01to x=0.999 (step 0.001). The 1000 f(x) values are displayed in figure 2.

Figure 2 looks like a complete random pattern. Please note that the numerics is far from being
trivial. As a rule of thumb, one has to calculate with as many digits as “n” (here 10,000). It is even
more striking that one can go finer and finer, and still there is the same pattern. This has been
displayed in figure 3, figure 4, and figure 5. In the very near vicinity it has a complete different
value. If something is governed by such a function, no prediction is possible. Actually, the initial
value x = 0.5 is supposed to vary by around  1073%3 (three thousand and thirteen zeros after the
decimal point!) in order to make a decent prediction in this case. Needless to say, it is beyond any
accuracy in this world. Such situations are therefore considered unpredictable. Of course, no
computer or software will help. The only way out in this situation is to find a completely different
description. A good way out is to use conserved quantities (see next section). But one has to
accept that some things cannot be predicted. Ignoring that is not only a waste of time. If results
are created in chaotic situation and taken at face value, management effort is spent, but the
predictions are as good as throwing dice.

Up to now the essential definition of chaos is that small causes have tremendous effects. Such
definition is by no means bad, especially in business situations where more often than not no
formulas are given. Nevertheless, it does make sense to look for more rigorous definitions. In what
follows I will therefore discuss some standard mathematical definitions.
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The maybe most often used definition of chaos is the occurrence of “white noise.” If the input
values show some (narrow) distribution (little noise), the output will show an infinitely wide
distribution (all frequencies, white) if chaos is present. This is graphically displayed in figure 6.

input output
0; O.KIEj
>
oo |
= 1 2 T

Figure 6: Distribution of input and output values in the presence of chaos

For a fully developed chaos an arbitrarily narrow Gaussian distribution will turn into a complete
random distribution. In, for example, figure 6 one easily sees that this is the case. Of course, one
may talk of a continuous transformation from non-chaotic behavior into fully developed chaos.
The distribution becomes wider and wider. Such considerations are very useful because in the real
world there may be almost never fully developed chaos. Even in figure 4 there is no fully
developed chaos. Only for n it is truly chaotic. With n = 10000 as plotted there the situation
becomes quite regular on a scale of 103%3, So strictly mathematical there is no chaos; for any
practical purpose however, it is extremely chaotic. Such an analysis from input to output values
like in figure 6 should be performed in any kind of analysis or planning. If the output distribution is
very wide, the entire consideration is completely worthless, be it because of chaos or whatever
reason. Unfortunately comparing distributions of input and output is rarely done, especially in
management (cf. Grabinski (2007)). Even an ordinary error analysis is almost unknown.

Another litmus test for chaos is the so called Lyapunov exponent. In order to understand it better,
| will give another example of a chaotic function: the logistic map. Arguably it is the most
scrutinized object in chaos theory by mathematicians and scientists. The so called logistic map is
defined by the following recursion formula:

fn(a:S) =a 'fn—l(afs) ) (1 _fn—l(afs)) and s = fO [4]

For the startingvalues,0 s 1 musthold."a" is a “factor of strength” with 1 a 4. Starting
with s = 0 leads to f(n) = 0 for all “n”. It is a so-called fix point. Starting with s = 1 also leads to f(n) =
0 for all n > 0. Depending on “a”, there are other “strange” points like s = % for a = 4. Please note
that the standard literature such as Schuster (1984) defines the logistic map as a function of “n”
with a parameter “a” and a starting value “s”. It is of course the “same function” with the same

properties. | have chosen the form given in [ 4 ] because it is closest to an ordinary function
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describing some timely development over “n” periods. Indeed [ 4 ] describes the capital
development after “n” periods on a strangely managed bank account. | will come back to it in
section 3 of this chapter.

But the most interesting behavior of the function of [ 4 ] is given if “a@” is sufficiently large. Up to
a =3, fa(a,s) is a pretty ordinary function. After that point it will jump between two values
depending on “n” (bifurcation). At “a” about 3.45 the two values split again. If “a” becomes
3.5699456... or bigger the situation becomes chaotic. For sufficiently big “n” the slightest change

n “s” (or “a”) will change fn-»1(a,s) beyond recognition. Please note that there are many plots of
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Figure 7: Logistic map, n = 25 iterations, ten plots for ten slightly different start values
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this behavior in the internet or textbooks like Schuster (1984) or Grabinski (2007). Though the
general form is okay the details are properly wrong. This is because the function is so chaotic that
a numerical calculation becomes difficult. Calculating f, with Excel is at first glance pretty simple.
But for n > 20 and a > 3.6 the results are random numbers rather than the true values. One
roughly needs to carry 2" digits of accuracy for “n” iterations in [ 4 ]. For n = 25 this means an
accuracy of over 30 million digits. In figure 7 | have plotted f,s(a,0.333328), f25(a,0.333329),
f25(a,0.333330), f2s5(a,0.333331), f15(a,0.333332), f25(a,0.333333), f25(a,0.333334), f5(a,0.333336),
and fs(a,0.333337) over “a” from 1 to 4. So, the starting values just changed by a thousandth of
percent. The exact calculation used about 20 hours of CPU time and 13 GB Processor memory. |
have included the Excel plot in figure 7 for comparison (It took less than one second of CPU time).
The rough picture is the same but the details are different. It stresses again that even todays
computers have a hard time to deal with chaos. Be it as it may, figure 7 shows that for a > 3.6 no
prediction is possible though only 25 time intervals were considered and the starting value had
been known within 1073 percent or one Cent in 1000 Euros. Please note that even for a > 3.6 there
are some areas where the exact and Excel calculation are identical. This is due to the fact that
even after a =3.6 there are some small islands where the function remains regular. Within those
islands it is easy for Excel to calculate the true values.

It is maybe useful to note that the logistic map of [ 4 ] and the example of a chaotic functionin [ 3]
are close allies. More specific, the function of [ 3 ] is identical to the logistic map for a = 4. The
proof of it is quite simple if one uses complete induction and the fact that cos(2 ) =2 cos? -1.

But now | want to come back to the Lyapunov exponent. Because mathematical considerations of
chaos are best understood by iterative functions like the logistic map, the definition of the
Lyapunov exponent starts with an iterative function of the form:

frr1=9(f) [5]

In the case of the logistic map g(x) = a x (1-x). In chaotic functions adjacent points like fn(xo) and
fa(xo + ) increase in distance dramatically after n iterations. This is displayed graphically in figure 8:

n iterations e - e M(x0)

Xo Xo¥ fa(Xo) f(xg+ )

Figure 8: Definition of

It is always possible to write the growing distance in the form of figure 8. It is a definition of a
function (xo). Please note that also dependsonn, g, and up to now. From figure 8, can be
written in the following form:

fa(xo +€) — fu(x0)
)

1
(x9) ==-Lo
n £

(6]
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Taking now the limit 0 will transform the quotient within the absolute value into a differential
of it. Taking than the limit n leads to the final definition of the Lyapunov exponent:
1 dfn(Xo)
= lim=-L | 7
(xO) Tll—zg n Og dxo [ ]

Please note that the [ 7]is different from the one of [ 6 ]. Just for simplicity | have used the
same symbol. f, is the n-th iteration. In general it is a very complex function of a chain of g-
functions: g(g(g(...xo)...))). Besides the definition of the interpretation of it is very interesting.

dfux0)

dx,

Figure 9: Lyapunov exponent (s, a) for logistic map (n = 20)
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It is the exponent for exponential growth of the distance of two adjacent points. If <0, the
distance between the two points becomes exponentially smaller by each iteration. This is a
complete regular behavior. However, if > 0 the distance is growing exponentially. This is called
chaos. Please note that even without taking the limit n a Lyapunov exponent does make
sense. It still shows whether the distance between two adjacent points is increasing (chaos) or
decreasing (no chaos). Furthermore, always depends on the starting value xo. That does make
sense. Consider for example the logistic map of [4] where xo = s. For s = 0 chaos will never show
up. The same is true for a = 4 and s = %. In figure 9 the Lyapunov exponent of the logistic map as
function of starting value s (or xo) and the prefactor “a” has been plotted. depends on “a” and
“s.” However the typical transition to chaos is given at around a 3.6 almost independent of the
start value s. Furthermore, there are areas of regular behavior ( < 0) even for a > 3.6 and vice
versa. Please note however, that | have used n = 20 in the logistic map only. Hardly a perfect
approximation for n . But already for n = 25 the calculation of figure 9 needs more than 300
GB in processor memory, which was not available. But even with that approximation oscillates
rapidly for a > 3.6. This stresses the point that the limit [ 7 ] (for calculating the Lyapunov
exponent) does not necessarily exists.
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2. Conservation laws

In science and especially physics conservation laws are used. The best known is perhaps the
conservation of energy. More intriguing may be the conservation of mass (as measured in kg).
Here, conservation laws of science are not discussed for their own sake and by no means in detail.
The purpose is to learn something for business and economic situations (see next section).
Therefore, two questions should be answered:

What makes conservation laws so interesting?
What have conserved quantities to do with chaos?

The short answers to each question are that conservation laws imply equations of motion. With it
we can predict the future. And conserved quantities can never show chaotic effects. Both are
definitely interesting for business and economics. It is the main business for managers and
economists to predict the future and act accordingly today. Furthermore, the last section has
shown that chaos may spoil everything. Therefore, it is important to understand the questions to
be able to understand their answers. In physics, equations of motion are well known, cf.

Newton (1711). In business and economics nobody knows the “equations of motion.” In this thesis
general conservation laws for business and economics are developed for the first time. For a
better understanding, conservation in physics is considered first.

Consider a sphere as indicated in figure 10. The total mass in the sphere may be M. It consists of
many small pieces of mass m;. The mass inside is M = m; +m; + m3 + ms + ms + mg +m7. Without

Figure 10: Graphics for mass conservation



26
Chaos and conserved quantities

any masses going in or out, the total mass M stays constant. It is conserved. It cannot be created
or annihilated. As also indicated in figure 10, my is about to leave the sphere indicated by a mass
current J,. Because the mass current flows in a certain direction, it is a vector, indicated by the
little arrow over the symbol. The same is true for the mass ms. It is about to enter the sphere as
being indicated by the mass current Jg. So, the change of the total mass M over time in the sphere
is opposite to the sum of the mass currents. If the dot over M denotes the timely change (or its
derivative with respect to time) one may write the formula:

n
M+ ) 7,-5=0
i=1

L

(8]

Here S is a unit vector (length 1) perpendicular to the surface. In that way straightly outgoing
masses are counted positive and incoming negative as it should be. Instead of considering
separate mass points one may also take the continuum limit. Then the mass is distributed
continuously. Furthermore, one may consider an arbitrarily small piece of volume dV. In this piece
the mass will be dM = dV, where denotes the density, and density times volume is mass.
Getting from dM back to the entire mass M one has to take the volume integral. The summation
signin [ 8] turns into a surface integral over the closed surface S. Doing so one gets:

Jvﬂdvp+5§£d§-j=o (9]

Applying the Gaussian integration theorem, which says that a surface integral over a closed
surface can be written as volume integral over the divergence [[f dV divd = ¢f dS - 3 with
divi=V-3 = dya, + dyay + 0,a,, transforms [ 9] to[ 10].

p+divi=0 [10]

[ 10 ] is a differential equation for = (x,y,z). It is the equation of motion. In classical mechanics
there are three other conservation laws: One for momentum (mass times velocity), one for
angular momentum (rotation frequency times moment of inertia), and one for the energy as
mentioned above. Because this thesis is not about physics, | will not go into detail. But some
historical remarks are interesting here. The conservation of momentum leads to a similar but
more complicated differential equation like [ 10 ]. It is the so called Navier Stokes equation, which
is the key equation in fluid dynamics. Claude Louis Marie Henri Navier and George Gabriel Stokes
proposed this equation independently in 1827 and 1845, respectively. Though the conservation of
momentum had been well-known for over hundred years at this time, Saint-Venant who proved
the equation first, used a very different way to prove it. He used Newton’s equation to do it. Up to
my knowledge, it was the late Nobel laureate Landau who first used conservation laws to derive
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the Navier Stokes equation in the 1950s, almost hundred years later. Deriving equations of motion
for arbitrary systems rather than just fluids is younger still. It was Liu in the 1970s (for example Liu
(1978)) who did it. He called his approach (euphemistically) the standard procedure. Though it
applies to any physical system from fluids over solids up to neutron stars, it is far from being
standard even today. Though this hydrodynamic approach as it is also called is extremely
powerful, it is rarely used. Even in today’s physics lectures the Navier Stokes equation is derived by
using Newton’s equation more often than not. Being useful for so many physical systemes, it is
astounding that it should not be a powerful tool in business and economics. As this thesis shows, it
is useful and powerful in business and economics. On the other hand, seeing the history of
conservation laws in physics, it may take hundred to two hundred years until they will be common
sense in business and economics.

In the last section | have shown that it is useless to observe quantities which fluctuate chaotically,
and it is impossible to predict the future of these quantities. The good news for, for example, a
manager from this is that he or she has not to care about these quantities. The urgent question is
what else can be done? What other quantities can be used? Such questions led to the work of
Appel (2011). There he found already that the market value (or better market price) may fluctuate
chaotically and is of no use whatsoever. Therefore, it was necessary to define a conserved value,
because it cannot fluctuate chaotically. The proof is quite simple. If a quantity is conserved, any
change of it must be caused by a change in initial value (or something else). (In the case of the
mass, it is a mass current) Therefore an arbitrarily small change cannot cause a macroscopic effect.
In other words chaos is prohibited or [ 2 ] is always fulfilled. Of course, this is true for anything in
the world, not just physics. The only prerequisite for this “anything” is that it is governed by cause
and effect or causality. And causality is generally assumed. However, even if causality were
violated in some cases, it is still a valid law for everything from science to management. This is
because things not obeying causality are completely useless to be considered for analysis or
predictions. So, | can conclude this section with the following statement:

Statement 1: Use of conserved quantities

=> If a quantity has the ability to behave chaotic, it is a waste of time to consider it. Instead
conserved quantities are the only reasonable variables to describe, analyze, or predict in
this situation.

Please note that this statement is not new. It is known in physics for a long time. For other
situations like business and economics it had been suggested by Grabinski (2004) for the first time.
Here it is explained and rigorously proven.
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3. Business situations

Now the theory of the last two sections, which originated mainly in physics, should be transferred
to business and economics. Here it is done in a general form. In the next chapter (Examples in
business and economics) it will be done in detail for some situation with detailed results.

In the subsection “3.2 Conservation laws in business and economics” | will transfer the general
content about conservation laws of the last section to business and economics. This is however far
from being just an application. Here, a new conservation law in business and economics is derived
comparable to the conservation of energy in physics (actually it exists for the same reason as in
physics).

3.1 Chaos in business and economics

As stated already in section 1 of this chapter, the (modern) mathematical considerations of chaos
started over hundred years ago. The first striking effect in the real world manifested in the 1960s
when Edward Lorenz discovered chaos effects in the mathematics of weather forecasts. He proved
that even the little eddies of a butterfly wing have an effect on the start of, for example, next
month’s rain. Obviously, that makes long term weather forecast impossible. This effect is
commonly referred to as “butterfly effect.” It is interesting to note that, for example, the average
temperature of the earth, be it the spatial or timely average, are very predictable and non-chaotic.
They belong to a conserved quantity (here: energy). The same is true for the average precipitation
(again spatial or timely average). The reason is here the conservation of mass. At least from that
point in history it should be clear that chaos will most likely show effects in business and
economics, where predictions and forecasts are the bread and butter business. However, such
interpretations were not made for quite a while in contrast to science and engineering. The 1970s
and 1980s were full of discoveries of chaos effects in these areas. There were useful applications
like machines with a chaotic force distribution in order to have bearings to be worn out evenly.
The end of the 1980s and early 1990s marked the hype for chaos in business and economics.
However, these works did not come to the point and are far away from the rigorous descriptions
of this thesis (see for example Allen (1990), Nonaka (1988)). Other discussed seemingly important
effects but did make horrible mistakes (Weiber (1993)). The latter work was the origin of the third
section in the next chapter (“3. Diffusion model in marketing”). The only exception was the work
of Peitgen (1984) who reported about chaos effects in a bank account. | will discuss it in detail
further below. (Please note that Hans-Otto Peitgen was a pure mathematician and neither an
Economist nor a business professional.)
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The first who noted seriously about effects of chaos in business and economic situations was
Grabinski (2004). There an example of traffic flow was given. Later possible effects on logistics
were discussed (Grabinski (2007, 2008)). They formed the origin of this thesis. One can only guess
why it took so long that chaos effects were included in business and economic considerations.
Some thoughts about it can be found in Grabinski (2007). Firstly, for a thorough understanding of
chaos (beyond “little causes have tremendous effects”) one has to be fluent in modern pure
mathematics (from Hausdorff dimension to information entropy). Secondly, colorful pictures of
fractals in chaos brought it into an esoteric rather than scientific corner. Thirdly and most
importantly, chaos is a “disruptive” effect in business and economics. It tells that something is not
possible for principle reasons. But it does not necessarily tell how to do it correctly. (The
conserved quantities help to overcome the problem.) And especially managers are far away from
admitting “l don’t know it.” or even worse “There is no answer to it.” It tells what can be done and
what not. It even shows that some managerial work of today’s managers is a complete waste of
time and money. Even more striking, quite a huge chunk of the financial industry delivers no value
for mankind (cf. Appel (2011, 2012)). All this should be seen as an encouragement and stress the
importance of this thesis.

Now | will come back to the example of banking as mentioned above. Let’s supposed somebody
has a savings account and periodically takes away some of the interest it gained. The main
question to answer is how much money will be in that account after a certain time in dependence
of the money invested originally. This seems to be a standard (and trivial) question for a bank
manager. Because the customer is a free person, he or she may withdraw whatever he or she
wants. So, one may set two rules for the bank account:

The currency is calculated in a way that the bank account contains always something
between zero and one. (For example: If € 123,456.78 are in the account one will call it
0.12345678 million Euros.)

After each interest period the original capital times the capital including interest is
withdrawn. (For example: 0.8 was in the account and it gained 12.5 % in interest, then
0.8-1.125—(0.8-(0.8-1.125)) = 1.125-0.8 - (1 — 0.8) = 0.18 will be in the account.)

It is a clear and unambiguous rule. The first one is just stated in order to keep the second rule
simple. It is easy to show that the account will never become negative. Furthermore, it will always
stay between zero and one. Though the rules might sound strange and unmotivated, some crazy
millionaire might just want it that way. And every bank manager will probably say that it is very
easy to predict the financial status of this account.

If somebody puts € 1.00 in such account and the interest is 300 % within one period there will be €
817,959.10 in the account after120 periods. (Please note that 300 % of interest sounds high, but
alternatively one may take a long period). Starting with one cent less (€ 0.99) there will be €
865,051.03 in the account after 120 periods. This is 5.76 % more, though one started with 1 % less.
Starting with 1 % more (€ 1.01) leads to € 493,965.31 or 39.6 % less. Showing a graphic stresses
the point even more clearly:
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Figure 11: Account balance after 120 periods, starting capital between € 0.99 and € 1.01

As one sees from figure 11, for any very slight change in the initial capital the ending balance is
jumping (almost) randomly between zero and one million Euro. It appears to be unpredictable.
Especially the reverse question is difficult to answer: Find an initial capital which leads to for
example € 123,456.78 after 120 periods! To find this solution is almost impossible even with
today’s powerful computers, at least if one uses the iteration and not the formula from [3]. It is
also intriguing to look, how much money is in the account after each period, if one starts with one
balance
end of ,;

period . . . .
[€m] ° ° °

06

. w .
# of interest period

Figure 12: Account balance after each period
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Euro. This is shown in figure 12. Only during the first few periods the behavior looks regular. The
rest of the 120 points are scattered around almost randomly. As stated above, this is probably the
first example of chaos in a business situation.

The mathematical proof of chaos is pretty simple here. As most readers might have recognized
already, the formula for the account balance after each period is nothing else than the logistic map
of [4]. The interest rate is “a—1"in [ 4 ]. From this it is clear, that | have chosen such a high
interest rate in order to find chaotic behavior. The particular interest rate of 300 % (or a = 4) have
been chosen in order to use [ 3 ] instead of [ 4 ]. (This reduced CPU time dramatically. However,
Excel is still not able to perform the calculations.)

The main point of this example is that there are business situations, where a standard parameter
(here account balance) is totally useless due to chaos. The immediate question is, what parameter
should be used to describe this process? The answer is given by statement 1 of the last section: It
must be a conserved quantity, because such quantities cannot show chaos effect. A conserved
quantity is something, which cannot be changed by a snip of a finger. In this example the capital
gained due to interest is a conserved quantity. That it is the only one, will be shown in the next
subsection. That it is a conserved quantity, has to do with the fact that the capital in itself is a
conserved quantity. Else it would be possible to create capital from nothing which is obviously
impossible. (In other words, in a world where capital could be created from nothing, such capital
would be worthless.) To prove this theory, one may consider the capital extracted at each period.
The sum of it including interest (here 300 %) is given by:

119

S120 —Sp t+ 2(4 ©S; = Spyp) 4107 [11]
i=0

total capital extracted [€ m]
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Figure 13: Total capital extracted in dependence of original balance
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Here s; denotes the account balance which varies chaotically, cf. figure 12. This sum must not
behave chaotically, and indeed it does not as figure 13 shows. The enlarged scale shows a perfect
linear behavior as it should show. So, this example shows nicely how statement 1 holds.

3.2 Conservation laws in business and economics

In the second section of the last chapter | have shown, what conservation laws are, and that they
are not affected by chaos. (A detailed consideration can be found in Klinkova (2017).) In the
previous subsection 3.1 | have shown an example from accounting where chaos exists and a
conserved quantity (capital gained) does not show chaos because it is conserved. The only thing
left to do is to show the conservation law(s) of business and economics. This is easier as it sounds
at first glance.

The starting point is Gutenberg (1998). His systemic approach of the 1930s is much elder than the
reprint of 1998. There are various descriptions of it. The one useful here goes as follows. It exists a
function L

which determines the development over time of an operation (company, state, etc.). Here g; is a
variable and q; its derivative with respect to time t. What are these variables is completely open.
They may range from “capital invested” over “hours worked” to “technology used”. There may be
a very huge number of variables (N >> 1). Furthermore, the function L is far from being known.
Only its existence is demanded. In other words, tell me the status quo inside and outside an
operation and the rate of change of the status quo, then the status of any later time is completely
determined. The existence of a function L of [ 12 ] is nothing but demanding causality (in a
guantitative sense). Therefore, systemic approach means nothing else than causality in a
quantitative sense. There is hardly anybody who might deny it nowadays. Please note that if there
were something without the causality of [ 12 ], any management of it would be completely
useless.

The function L of [ 12 ] is of course far from being unique. Therefore, it is allowed to demand
something of the function L. In physics the existence of a function is often demanded. (Because
Gutenberg studied physics and chemistry first before he turned to business, he probably derived
his systemic approach from there.) One example is the existence of a function S (entropy) in
thermodynamics. Another one is the existence of a function L (Lagrange function) in classical
mechanics. In both cases the demand of existence is nothing but demanding causality, which
sounds almost trivial. However, in physics the existence of the function and its particular variables
are demanded. In other words, if such and such values of these variables are known, the future is
determined. This is a much more stringent demand, and it leads to many results. Here we do not
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know the variables, but nevertheless one can derive one conservation law. Be it as it may, as a
learning from physics, it is smart to demand some extreme behavior of the function. Of course,
one may demand whatever one wants. But some demands will lead to conclusions and others not.
In the case of entropy S, one demands that S takes a maximal value. In the case of the Lagrange
function L some functional W should become maximal:

t2

w = f dt L(g,(6), ., qi (), - qn ()5 G2 (2), . Gi (D), . qn(t);t) — maximal [13]

Exactly this should be demanded here (as stated above without any limitation). t; and t; are the
initial and final points in time over which all the variables will develop. And the development over
time of the q; is exactly the question being asked. If one would know this development, one could
make exact predictions and all problems of management science would be solved. It will remain a
dream for the time being. This is because no one knows the variables gi and in particular not the
function L. [ 13 ] defines a standard problem of functional analysis. For solving it, the same
approach as going from [ 80 ] to [ 81 ] of the appendix can be used. Doing so leads to the following
N (coupled) differential equations:

d oL 0L

_ — = 14
dt aql aql [ ]

They are the “equations of motion” for all business and economic situations. Not knowing L it is
useless to try to solve it. But other important conclusions can be drawn from [ 14 ]. One may take
the total derivative with respect to time of Lof [ 12 ], use [ 14 ], and the product rule of
differentiation:

dL_aL+i_ oL . oL z d oL aL Z
dt ~ 9t i_lq" aq; " 1 aq, T U grag V9 g "o Tar Lt aq [15]

Up to now this is just pure mathematical rearrangement. However, the very general form of L in

[ 12 ]is “too” general. This is because L must not depend explicitly on time t (only implicitly via the
gi). If it would depend on t explicitly there would be something strange. If all values of the
variables are the same, but only the time t is different, every outcome should be the same. In
other words, all laws of business and economics must not change over time. (The same is true for
the laws of physics.) Therefore, dL/dt= 0 must hold. Then [ 15 ] can be written as a total derivative:

d L i ] oL =0 L i y oL [ tant ti
dt ' 1‘11 a4, = or . 1ql a4, is constant over time [16]
1= =
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So, we have derived a constant quantity or a conservation law. Comparing it to physics, this is the
equivalent to the conservation of energy which stays constant because our universe is
homogeneous in time. Please note that in physics there are at least two other symmetries or
invariances. It leads to additional conservation laws.

Here nothing is known about symmetries or invariances within the variables ;. So [ 16 ] is the only
conservation law. Unfortunately, nobody knows what L — Y g; - dL/q; means because nothing is
known about L. However, with some (small) assumption, one will find something. Up to now the
only assumption was causality.

In order to find a less abstract interpretation one may take some further assumptions. (A detailed
consideration can be found in Klinkova (2017).) My assumption dates back to Adam Smith who
proclaimed that in business and economics everything is determined by a value v (in a monetary
sense). So, if somebody is working, he or she might want to improve something in order to be
more valuable in a monetary sense. In other words, one will only consider activities which will
increase or decrease some value v;. With this assumption the variables gichange into vi.

Taking values v; for the variables g in L one has L. = L(v;(t), v;(t)). Without any limitation one may
divide everything in smaller and smaller bits. In doing so the particular vi becomes a smaller and
smaller. Furthermore, one may change v; arbitrarily slowly. Alternatively, one may choose a time
unit where v; < 1 always holds. In doing so L can be written as a Taylor series of lowest order:

L=a+a1'v1+a2'v2+---+b1'1'71+b2'172+--- [17]

Using this in [ 15 ] the conserved quantity takes the form

g oL aL ~
VU0 V2w, T T

a+a1'vl+a2'U2+"'+b1'1'71+b2'1'72+"'—l'71'b1—1'72'b2—“'= [18]

a+a;-vi+a; vyt

From [ 18 ] one sees that a linear combination of the values v; is conserved. However, the only
condition was that the v; are small. Let vi' = ajvi. vi will be small, as long as v; is sufficiently small.
This transformation of value must also be applied to the timely derivative of vi leading to newly
defined by'. But these variables were cancelled out anyway. So, we have found that the sum of the
values (v{') is conserved. This leads to the following important statement:

Statement 2: Conservation law of business and economics

=> In all economic or business systems there is one strictly conserved quantity. Considering
values and their changes implies that the total value is conserved.
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So, it is explicitly proven that value is a conserved quantity. It was the (reasonable) assumption in
the publications of Appel (2011, 2012). Together with statement 1 one sees that the only
reasonable description of a complex and probably chaotic system must be done by using
conserved quantities only.

The conservation of value has also another implication. The conserved quantity “value” as defined
here is generally distinct from market price (sometimes also called market value). Obviously, the
market price may change without changing anything else. Therefore, it cannot be a conserved and
it must be different from value as defined here. Of course, it is not forbidden to consider the
market price. It is even quite often necessary. But it is completely useless for planning or analyzing
an enterprise if the situation is sufficiently complex. This becomes very clear if someone considers
prices in the stock market instead of underlying company values (cf. section 4. Development of
chaos in financial markets of the next chapter). Unfortunately, most brokers do it just the wrong
way.
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III. Examples in business and economics

The last chapter explained the theoretical background of my thesis. In this chapter | will go into
the details of business situation. It is an application of the theory of chapter two. | will show four
examples. They are neither a complete set nor are they the most important examples. | have
chosen these examples because it was possible to detect chaos which had not been noticed
before.

Partly a lot of mathematics is involved in order to show the chaotic effects. As long as these
mathematical considerations are not necessary to understand the main point, | have abandoned
them to the appendix.

1. Warehouse location

To find the optimal warehouse position it is a standard problem in logistics. However, it is not the
goal of this thesis to find new ways to solve that problem. (Though, especially in the appendix one
may find some useful input for improving current algorithms.) The goal of this section is to build
on the works of Grabinski (2007, 2008). There it was shown that in the simple set up of just two
customers the warehouse should always be placed at the biggest customer in order to minimize
transport cost. However, if both customers become bigger and bigger, eventually two warehouses
are cheaper than one. It would lead to zero transport cost and costs for two warehouses in
contrast to just one. This is a macroscopic change, though the initial change in customer size may
be arbitrarily small. And that means chaos, according to one of its definitions. If a customer size is
around this particular value, planning warehouses becomes impossible, because nobody can
forecast exactly how much a particular customer will consume in the future. On the other hand,
one has to decide to build either one or two warehouses.

Though having two customers only may sound trivial, it is a situation where chaos occurs with all
its consequences. The immediate question is: What happens if there are more customers? Does it
become more chaotic (most likely) or is there some lucky averaging out? How is the principle way
to show it? What are the consequences? What are the conserved quantities, and are they really
non-chaotic (cf. statement 1)?
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Please note that there is a lot of software available to find the optimal warehouse positions and to
calculate associated transport costs. However, this software is completely useless here. Firstly,
they perform numerical calculations only. One has to insert coordinates for the customers and one
will get coordinates for the warehouse. However, | do need a formula in order to see where there
is a chaotic regime. Secondly, all software does not deal with the question which warehouse
should deliver to which customer. One has to state the number of warehouse first and also say
which customer is delivered by which warehouse. Essentially it is solving the problem of one
warehouse and a certain number of customers. (By looking at subsection 3.1 of the appendix it
becomes clear why this is the case. Deciding which warehouse should deliver to which customer
involves even numerically very complex mathematics.)
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Figure 14: Chaos with two customers (source: Grabinski (2007))

In figure 14 the situation for two customers is summarized. Let them have consumption rates of c;
and c; and being separated by a distance d. The specific transport cost is “t”, so that the cost
transporting from customer one to two is t-d-c;. In figure 14 the two consumption rates c; and c;
are the labels of the axes. fw denotes the fix cost of one warehouse. Depending on the
consumption rates there is one warehouse at customer one or two, or two warehouses (one at
each customer). The dotted lines separate regimes for one or two warehouses. Near these dotted
lines an arbitrarily small change in consumption will shift the optimal warehouse position over a
distance d or make the change from one warehouse to two. The dotted lines are (as all lines) one-
dimensional. The ci-c2-space is two-dimensional. So, there is a one-dimensional chaotic regime in
the two-dimensional consumption space.
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For three customers, there should be a two-dimensional chaotic regime within the three-
dimensional c space. | will show that it exists and how it looks like. So, one has to consider three
customers C;, C;, and C3 with consumption rates ci, ¢, and cs. For them, one has to calculate the
optimal warehouse position and the corresponding cost (transport cost plus f,). Then one has to
consider two warehouses. Their optimal placement is pretty simple. The warehouses are supposed
to be at the biggest customer and the second biggest as stated above. The total cost of this

(= transport cost to smallest customer plus 2f,,) must be compared to the total cost of one
warehouse. Equalizing these two costs yields a function c; =cs(c3, ¢2) which defines the two-
dimensional surface in the three-dimensional c space. Though this approach looks pretty straight
forward, it isn’t. Finding the optimal warehouse position for three (different) customers is possible
numerically only. Therefore, in a first step one has to consider equal customers (c1=c; =c3=c). In
a second step one assumes a deviation of it and expresses the problem in the variablescand c=
Ci — ¢j. Because one knows the solution for ¢ =0, one can build a Taylor series in c. This is what
physicists call perturbation theory. Details can be found in the appendix starting with [ 56 ]. In
doing so, one can solve the problem up to any order in c. Though this is really straight forward, it
is incredibly messy. It is known as the Steiner Weber problem for three equal customers. Though
Fermat found already its solution geometrically, | have never seen an analytic calculation of the
optimal position (wy, wy). To the best of my knowledge, | have solved that problem in the appendix
for the first time. The result is displayed in [ 53 ] on page 73. Even that very long formulas must be
transformed by the transformation of [ 44 ]. Needless to say, that this is possible, but whatever
results, it will bring no conclusions can be drawn. There | have taken another approach:

6V3

Figure 15: Three customers in a regular triangle

In figure 15 | have chosen three customers in a regular triangle. Though it is a limitation, it is hardly
possible that this will cause more or less chaos effects. The customers may have an arbitrary but
equal distance “I” from each other. | have chosen a length scale so that this distance is | = 6+/3.
This is by no means a limitation. (From the appendix 2 it might become clear why | have not
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chosen a length scale so that “I” is equal to one, which is of course also possible.) As long as the
consumption rates of all customers are equal, the optimal warehouse position will be in the center
as indicated in figure 15. For different consumption rates the position will vary towards the bigger
customers. With bigger and bigger c; the transport cost will become bigger and bigger. Eventually
it is smarter to have two warehouses at the two biggest customers leading to total costs of Ciye =
2-f, + 6V3-t- cs, where fy, is the fix cost of one warehouse, “t” is the specific transport cost
(cost per distance and tonnage), and c; is the consumption rate of the smallest customer. So, there
is the situation where the costs for one warehouse and two warehouses are equal. At this set of ¢,
c,, and c; the warehouse position jumps from one warehouse somewhere in the middle to two
warehouses at the biggest customers. A slightest change in the consumption rates c; changes the
warehouse position dramatically. In other words, planning the optimal warehouse position within
this regime is impossible. The formula for it is given by [ 65 ] of the appendix. (Please note that

[ 65 ] is valid for c; < c3 < c; only. The remaining regime is easily constructed by symmetry
arguments.) As stated in the appendi, it is also possible that three warehouses are cheaper than
two.
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Figure 16: Surface of chaos: Surfaces of transition from one to two and one to three warehouses
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In this case there is a (chaotic) transition from one to three warehouses. All this is summarized in
the plot of figure 16. For sufficiently big values of c; and c; (and small c3) as in the front right
corner, there is a transition from one warehouse (below) to three warehouses (above). The same
is true for the edges of small c; and c;, respectively. In the middle where all ¢; are similar there is a
transition from one warehouse to two.

For sufficiently big values of the ¢; with the smallest ¢; > f,,/(t - 63/3), three instead of two
warehouses are always optimal. However, this is not shown in figure 16.

| have shown that the generalization from two customers to three leads to a more complex
chaotic structure. Now one may go a step further and consider four customers. It should lead to
three-dimensional chaotic regimes in the four-dimensional c; space. Because nobody is able to
think in four dimensions, | will show the principle only. The starting point is again a highly
symmetric arrangement:
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Figure 17: Four customers in symmetric arrangement

Now there are four customers in the diamond shaped arrangement of figure 17. Please note that
the symmetry of figure 15 has been chosen in order to get simple formulas, though any triangle
would have been possible. With four customers in an arbitrary quadrilateral, even for equal
consumption rates a numerical solution is possible only. The length scales of figure 17 had been
chosen so that the left-hand side of figure 17 is identical to figure 15. Furthermore, | will assume
equal consumption rates here or ¢; = c. Such simplification makes the general logic easier, though
it would be possible to start the same perturbation theory as with three customers. As long there
is one warehouse only, its position must be right in the middle. So, the total cost is:
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Cone = fur + (18 4+ 6V3) -t ¢ [19]

For arbitrarily small c this is obviously always the best choice. For arbitrarily big c, the optimum is
to have four warehouses with ciour = 4 fu. It is the optimal solution if the (smallest) consumption
rate is bigger than v/3/18 - f/t. The interesting question is what happens in between. For two
warehouses two different positions are thinkable:

w Ac,
C; W3 23 %)
=) . (S
;¥ W C;

Figure 18: Possibilities for two warehouses and four customers

Either the two warehouses are at C; and C; or they are at C;, and in the middle of the triangle of Cj,
C,, and Gs. All other arrangements are cost-wise identical. This kind of arbitrariness has to do with
the fact that all consumption rates are equal. If the consumption rates are almost identical but ¢4
is the biggest and c; the second biggest, then figure 18 is the only choice. For the right-hand side
of figure 18 it is obvious which warehouse serves which customer. For the left-hand side it is
unimportant whether the two warehouses serve two customers each or one serves three
customers. In any case the total cost is:

Cowoteft = 2 fow +12V3 -t ¢ Ctworight =2 fw + 18-t ¢ [20]
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With 12+/3 = 20.8 it is clear that the right-hand side of figure 18 is the optimal solution. But
please note that this result is due to the chosen geometry. Therefore, the second equation of [ 20 ]
gives the true result for cwwo. Equating [ 19 ] with [ 20 ] gives the chaotic regime (transition from
one warehouse to two) at:

Jw [21]
t

V3 fu
c=—

18
With further increasing values for c, three or four warehouses should become possible. The
optimal placements of these warehouses are always at a customer side. The corresponding costs
are easily calculated by:

Cthree:3-fw+6\/§-t-c Cfour=4_fw [22]
To see it more clearly it is very useful to plot the total costs for one, two, three, or four
warehouses:
total cost [f,] Cone
Cowo
“Cihree
AO Crour
/E
1
i
¢ [fw/t]

=
| =

Figure 19: Total cost for different number of warehouses and four customers

With any number of warehouses, the total cost increase with consumption c. But at

c= (\/§/18)( f/t) there is a jump from one warehouse to two. Then at ¢ = (1/9)(fw/t) thereis a
second jump from two warehouses to four. (Having three warehouses is never optimal.) So, the
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two dashed lines in figure 19 indicate the chaotic regime here. Here they are just points in the
one-dimensional c-space. If the ¢; were different, they were three dimensional objects in the four-
dimensional ci-space.

Figure 19 is important for a quite different reason. As | have shown in detail, the optimal
warehouse position may behave chaotically. Therefore, it cannot be predicted. This is in
accordance with statement 1. The position of a warehouse is not a conserved quantity. If a
position of one warehouse changes, there is no necessity that anything else changes. Therefore, it
comes as no surprise that the warehouse positions behave chaotically under sufficiently complex
situations such as finding optimal warehouses. The immediate question is here: Are there
conserved quantities? They must not behave chaotically. Indeed, the total cost is a conserved
guantity. It cannot be changed without any other corresponding changes. As one sees from figure
19 the cost is a perfectly fine function of customer demand c. Even at the chaotic points indicated
by the dashed lines it is continuous. The change in cost is arbitrarily small for any arbitrarily small
change in consumption c.

To close this section, | will comment on a situation with any number of customers. In the same
manner, one can go ahead with more and more customers. However, it will become more and
more tedious each time. But it is also possible to make the most general approach of an arbitrary
number of customers. (But it is not possible to solve it.) This is done in the appendix 3.1. There a
customer density distribution field c(x,y) is assumed and defined in [ 68 ]. Please note that the
arrangement of distinct customers is also within this approach. The setup of, for example, three
separate customers is easily achieved by a density distribution of three delta distributions (for a
definition of delta see [ 69 ]; the details of the limit are given in appendix 3).

The general procedure is as simple as with a handful of customers. One has to calculate the total
cost for one warehouse and for two warehouses and equate these two costs. The severest
difficulty is to decide which warehouse is supposed to serve which customer. It can be determined
by solving a non-linear partial differential equation. Even numerically this is a great challenge.
Formally one obtains [ 23 ] by equating the total costs (for details please see appendix 3.1):

[ axty ey [ -wor + r-w) =+ [ @600 -0+ (b6 @) - )]

( [23]
+ f dx 6(x — y(2)) - [1(x, ) — L(x, y(x))]

The I'sin [ 23 ] are essentially integrals of the customer density c(x,y). The function y(x) is a
functional of the customer density c(x,y) and a solution of the above mentioned non-linear partial
differential equation. Though solving [ 23 ] for c(x,y) is extremely complicated (even numerically),
there are solutions. More precisely, the functions c(x,y) fulfilling [ 23 ] are building an infinite
dimensional function space. For all elements of this function space the warehouse distribution is



44
Examples in business and economics

totally chaotic. Even the smallest variations in the customer distribution cause a change from one
warehouse to two or vice versa.
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2. Learning curves

Repetitio est mater studiorum, says an old Latin proverb. And of course, due to repetition one
learns to avoid mistakes. And one will be able to do something quicker, better, or in the language
of business with less cost. Because planning cost (or revenue) is the key managerial task, planning
learning is essential. The archetype of learning may take place in production and similar
operational tasks. However, it is by no means limited to it. Starting with a new product one has to
learn its marketing, for example. So, it comes as no surprise that some of the oldest formulas of
management science are the formulas of learning curves. So far this has to do nothing with the
topic of this thesis. However, planning with learning curves starts with the present progress like:

week one: cost was 15.00 € per 100 pieces
week two: cost was 12.00 € per 100 pieces
week three: cost was 10.00 € per 100 pieces

The interesting question is how this progress will go on, and how many parts per hour will we
produce in the long run? Having a formula for cost decrease due to learning, one will try to fit this
formula with the cost data like above. In doing so one is able to predict the future. More general,
there are input data (present cost data here or consumption rates in the previous section) from
which output date are calculated (future costs here or warehouse positions in the previous
section). Needless to say, if the input data vary, so will the output data. So, there is a possibility
that for an extremely small change of input data a dramatic change of output data might happen.
In other words, there is chaos which makes any planning totally useless. Exactly this is the
connection with this thesis:

Are there chaos effects in the application of learning curves?
What can be done in chaotic situations? Are there conserved quantities?

The answer to the first question is “yes.” The second question can be answered within particular
examples.

It sounds almost surprising that such chaos effects in learning curves hasn’t been discovered long
ago especially because learning curves are old and frequently used by production managers which
are “fluent” in mathematics. However, traditional learning curves do not show chaos effects, but
they are wrong. The first publication of mathematically correct learning curves can be found in
Grabinski (2007) and its generalization in Klinkova (2012). Therefore, it is useful to show the
general idea behind correct learning curves in the next subsection. Then | will apply it to an
example of marketing where normally two parties learn to fight for market share.
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2.1 Learning curves for one and two-party learning

Traditionally learning curves are assumed to take the form

cost =c, - t™° [24]

So, the cost decreases over time. The positive exponent is typically around %. The pre-factor ¢
has some strange dimension: cost times time . [ 24 ] or a similar version can be found in many
books and lecture scripts about management science. Quite recently it had been applied to the
mutual “learning” in warfare in the prestigious journal Science, Johnson (2011). However, [ 24 ] is
fundamentally wrong. And it can be shown very easily. Just take the limitt Oandt ,
respectively in [ 24 ]. It leads to cost and cost 0, respectively. And of course, cost is neither
infinity in the beginning nor is it zero in the end. (One may add some constant ¢ in [ 24 ] which
makes the cost different from zero in the long run. In the same way one might introduce a time to
by substitutiont  to + t. but this would introduce a fundamental time to. In other words, if our
world wouldn’t be homogenous in time, statement 2 wouldn’t hold. But this bares any experience
so far.) So it comes as little surprise that standard textbooks or lecture note lack a rigorous proof
of [ 24 ]. The first who has realized it was Grabinski (2007).

Before discussing the correct form of learning curves | will briefly comment on the possible
derivation of [ 24 ]. As stated, management science says little on it. However, Johnson (2011) did
explain where his approach came from. He derived it from a random walk approach as stated in,
for example, Rudnick (2010). In a random walk one considers, for example, a person who steps
with say 50 % probability to the right and to the left. On average he doesn’t move. For t one
will be at the origin. And the probability being, for example, three steps to the right decreases with
time in a power law as in [ 24 ]. Trying randomly will lead to either wrong steps or right ones. Of
course, there are more advanced random walk approaches where there are steps in many
different directions. All such procedures show the power law behavior like [ 24 ]. So, if one
assumes that learning is just a random walk, then one must have a power law behavior. However,
this kind of learning would be the learning of non-thinking creatures like ants. And indeed, for ants
“learning” to find the right place takes exactly the form of [ 24 ]. However, more advanced animals
and (hopefully) human beings learn differently. They can think. They analyze what went wrong
after each step and try to find the mistake to be avoided in the next step. In this sense, learning (in
production, etc.) means finding a mistake to be avoided next time. In the beginning there are lots
of mistakes. To spot one of them is simple. And one will probably find the one most easy to spot.
With each mistake discovered, there are fewer mistakes left which are harder and harder to spot.
The rate (timely derivative) of mistake spotting will be inversely to the number of mistakes
discovered already. Grabinski (2007) translated this approach into a differential equation. Its
solution yields:
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COSt = Cop + (Co — Cop) " €7 /7 [25]

¢ is the cost after all mistakes had been discovered. It is the lowest possible cost after finding the

optimal way. And ¢ is the cost in the beginning while trying for the first time. is the time scale on
which the learning takes place. Many useful applications of [ 25 ] can be found in Grabinski (2007).
But they are beyond the topic of this thesis.

In summary, [ 24 ] is the learning curve for unconscious (random) learning as it is present at simple
animals like ants. In contrast, [ 25 ] describes conscious learning as done by highly developed
creature like many apes or humans. So, it could be an ideal tool for behavioral biologists which
want to decide whether an animal thinks or not. They could just fit [ 24] or [ 25 ], respectively with
the corresponding learning data and the better fit could give a statistical proof of consciousness.
Unfortunately the graphs of the functions in [ 24] and [ 25 ] look pretty similar if the constants are
properly chosen:
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Figure 20: Learning curves for conscious and unconscious learning

This may also explain why the wrong use of the “learning curve” of [ 24 ] has not been discovered
in many operational situations where it had been used quite successfully.

Before | close this section, | will come to an important generalization of learning curves. Normally
people think that one person is learning how to perform a task and not vice versa. For example, a
person learns how to drill a hole in less and less time, but the processed material does not learn to
increase the time. Logically, this kind of learning is not applicable to most business situations
where competition is present. There are (at least) two parties who learn how to compete with
each other. This two-party learning has been considered only recently in Klinkova (2012). There
the problem of two parties fighting against each other has been considered. It was a direct
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response to the work of Johnson (2011). Deriving the learning curve for two-party learning is a
simple generalization of the derivation of [ 25 ]. Instead of starting with one differential equation,
one has two coupled one. The details can be found in Klinkova (2012). The general form of such a
learning curve takes the following form:

t t
A+B-e ®m—C-e % [26]

There is no equal sign in [ 26 ] because | have left it open what is learnt here. Normally it is not
cost. In order to explain it | will take an example which is also used in the next subsection. One
may think of the typical situation of competition in the product (or service) market. While
introducing a new product, one has to place it in the market. One will learn the particularities of
marketing. This means one has to avoid the mistakes. But there are also competitors fighting for
revenue. Both sides will learn. Normally one knows a lot about oneself, but not so much about the
competitors. One easily sees an in- or decrease in revenue. But one does not know where it leads
to eventually and one does not know whether it is due to one’s own fast learning (good) or weak
and slow learning competitors (may be dangerous). To answer these questions is the purpose of a
two party learning curve as the one in [ 26 ]. To see the point one should assume that [ 26 ]
describes the change in revenue of a (new) product. In the beginning (t = 0) the revenue is A + B —
C. Over the time one will lose revenue to the competitors due to their learning but will also get
revenue from the competitor due to one’s own learning. In the end (t ) one’s revenue will be
A. Obviously one lost B (to the competitors) and one gained C (due to one’s own learning).
Therefore, is a measure for the learning speed of the competitors and . is the learning speed of
oneself. Of course, the constants A, B, C, b, and . are generally not known, except one has a
waste of experience in similar situations. In general one has to observe market data (here simply
one’s own revenue) for a while and then fit the data to [ 26 ] in order to get the desired constants
A B,C, , and .

revenue
[units sold]

month

0 15 Fl

Figure 21: Revenue with new product per month
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In order to see the point more clearly and in preparation of the next chapter one may consider a
company having an undisclosed number of competitors starting with a new product. Every month
they measure the number of units sold, for example zeroth month 90 units, first month 86 units,
second month 84, and so forth. The entire revenue data for 24 months are given in figure 21.
These data must be fitted with the function of [ 26 ]. It can be done by an ordinary least square fit.
Please note that some constants in [ 26 ] are in the exponent. Therefore, the least square fit leads
to five non-linear equations which can be solved numerically only. Though this is straight forward,
the particular numerics is partly tedious and slowly converging, which is the mathematical reason
for the chaos effects discussed in the next subsection. Be it as it may, the least square fit leads to
units units units

, B=2592 ——, C= 36.13 ——, 1, = 3.062 months, t. = 10.87 month

A= 1003 month month month

With it the function of [ 26 ] is well defined, and one may plot its graph:

revenue
[units sold]

oL P ‘ o R month

0 5 10 15 20

Figure 22: Revenue per month actual (dots) and predicted by fit (line)

Compared to figure 21, the vertical scale of figure 22 has been enlarged in order to see the
behavior more clearly. (The data are of course the same.) Interpreting this result is most
interesting for a marketing analysis. Firstly, one can predict one’s own revenue in the long run. It
will be A =100.3 units per month. It will be the revenue if everybody in the market has learnt to
avoid all mistakes. Because , 3 months (learning period of competitors) is much smaller then .
11 months (one’s own learning period) the competitors are learning much faster. They are
learning in three months what one learns in eleven months. As an advice one can say that this
company has a good product but is very slow in bringing it to the market, especially if compared to
the competitor. Looking at figure 22 one sees that it takes 20 months to reach 95 units per month.
Extending the plot yields 50 months for 100 units per month. Depending on the cost situation that
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may be too long to survive. All this and maybe much more useful information can be drawn from
this simple least square fit. The only necessary input data were one’s own revenue. The most
exciting result is to get an estimate for the learning speed of the competitors without knowing
anything of them even not how many units they are selling.

But because this thesis is not about marketing, | will stop the discussion at this point. | will jump to
the next subsection where | show that this has to do a lot with chaos effects and conserved
qguantities.

2.2 Learning and chaos effects in marketing

In the last subsection | have shown how to get useful information for product marketing from
applying (two parties) learning curves. Because the results are numerical results, chaos effects or
chaotic regimes cannot be calculated. But they can be shown on statistical bases. | have taken the
input data from figure 21 (revenue per month) and made them fluctuate within a Gaussian
distribution. | have chosen a very narrow distribution with a standard deviation =0.001or a

2

variance of 2=10°. With such a narrow fluctuation the results (our constants A, B, C, b, and ()

should also fluctuate on a narrowly for non-chaotic behavior and widely for chaotic behavior.
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Figure 23: Distribution of A and ., class width percentage from average
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For the two constants A and . this is displayed in figure 23. In total, | have calculated the
constants for 100 different (Gaussian) distributions of the input parameters. (For the detailed
result please see appendix 4.) In figure 23 | show the distribution of the hundred output values for
Aand . within percentage classes. So, the class “100 — 101” means for example the number of
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results within 100 % and 101 % of the average. As one sees, “A” shows an extremely narrow
distribution. It does not behave chaotically. However, .shows an extremely wide distribution. It is
scattered around (almost) randomly. This is one of the standard definitions of chaos as found in
textbooks such as Schuster (1984). With the slightest change in input parameters of a percent or
less the value of . is scattered around randomly in the 10 % range. Besides this direct proof of
chaos effects in a business situation, there are two important interpretations of this result.

The first surprise is that . behaves completely chaotic while the constant “A” is perfectly regular.
This is by no means coincidence. “A” must not behave chaotically. Therefore, it was predictable.
(Actually, this is the reason why | investigated in this problem in the first place. | wanted to show
that my statement 1 holds.) “A” is the revenue the company makes in the long run with its new
product. And revenue is a perfectly conserved quantity. Making revenue means someone is paying
for it. So, it cannot change without a corresponding change somewhere else. It is the archetype of
a conserved quantity. This is in accordance with statement 2, which states that value is the
conserved quantity in business and economics. Of course, value is not equal to revenue, but the
value of this new product is a derivative of the revenue it will create. Please note that one may
make revenue with the selling of collectors’ items like the “Blue Mauritius.” Such revenue is
connected to a so-called value which is actually the market price Appel (2011). In any case,
revenues like the one by selling collectors’ items are never described by the model of [ 26 ] used
here. Therefore, this causes no contradiction.

As one sees, the conserved quantity revenue is very predictable. The dynamics of the system
(given by the other constants of [ 26 ]) cannot be predicted due to chaos. In other words, the
outcome is predictable, but the way and speed are not. This is completely analog to the weather
forecast. The precise date when it will rain is unpredictable in the long run. The total amount of
rain is very easy to predict due to mass conservation (of water in this case).

The second important question is whether the system is chaotic or the underlying model. This
important question was asked for the first time by Grabinski (2004). Obviously, | have undoubtedly
shown that for example .is unpredictable due to chaos. However, for sure | have shown that

[ 26 ] shows chaos under the circumstances discussed here. | have assumed that the revenue given
in [ 26 ] describes the true development of revenue. There are good arguments that it does, as
discussed above. However, all this is no proof. In any case it is a model and every model has its
limitations. Maybe these chaos effects just show us the limit. To decide on this is next to
impossible. If a conserved quantity would show chaotic behavior, then it would be sure, that the
model does not describe the reality under the given circumstances. Actually, this is the main point
for the next section. In the “diffusion model” of marketing 20 years ago chaos has been
“discovered.” However, there chaos also occurred in conserved quantities. Therefore, there must
be some faulty logic somewhere on the way.

To find out whether reality is chaotic or the underlying model is very difficult in general. Science
can use experiments to see whether the world behaves chaotically. In exactly that way it was
possible to show, that the development of the weather is chaotic in the long run. Edward Lorenz
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could just show that his system of equations behaved chaotically. And he assumed that they
described nature correctly. However later experiments on systems like air streams showed that
there is chaos present. In business and economics “experiments” like the one in science are
impossible. The only chance is to consider real situation over many years. From time to time there
are situations where the initial conditions are almost identical. If the outcome in these situations is
very different that would mean chaos. However, if two situations are many years apart it is mostly
impossible to speak of identical initial situations because the environment (for example
technology) has changed so much. A possible playground where business is fast and repeat almost
identical is the stock market. While the stock price is not a conserved quantity (Appel (2011)), it
may behave chaotically and almost all observations show that it does. Therefore, one finds
spurious correlations between the weather and the stock prices, for example Hirshleifer (2001).
Though this correlation may be less spurious than one thinks, cf. Akerlof, Shiller (2009).
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Appendix

4. Chaos in learning curves applied to marketing

In section 2 of chapter Ill, | have discussed learning curves, especially if two sides are learning like
in marketing, where at least two sides are fighting for market share. The purpose of this appendix
is to state some numbers so that the results can be proven and maybe further analysis can be
undertaken.

In figure 21 | have displayed the revenue over 24 months of a new product. Just for the reference
the values were:

{0,903,{1,86}, {2,84}, {3,82.5},{4,82}, {5,82.5}, (6,83}, {7,84},{8,85}, {9,86}, {10,87},{11,88},{12,88.5},
{13,89.5},{14,90.5},{15,91.5}, {16,92}, {17,93},{18,93.5}, {19,94}, {20,94.5},{21,95},{22,95.5}, {23,96}

The first coordinate denotes the month (time coordinate) and the second the revenue (in arbitrary
units). With this set of {t;, revenue;} data | have fitted [ 26 ]. In a so called least square fit | had to
find the minimum of

23 g £ 2
Z(revenuei—A—B'e ﬁ+C'e_T_C> [91]

i=0

by varying the constants A, B, C, ,, and .. The canonical way to do it is to differentiate [ 91 ] with
respectto A, B, C, p, or ., and setting each of the resulting five equations to zero. Having five
equations for five unknowns is straightforward to solve. Please note however that these five
equations are non-linear (and non-polynomial). So, they show an unknown amount of real and
complex solutions. It can be quite tricky to find the one which gives the (absolute) minimum.
Because the only possibility is a numerical solution anyway, it is much smarter to find the
minimum of [ 91 ] directly. Doing so yields the following formula for the revenue development:

t t
revenue = 100.2645 + 25.91774 - e~ 3.062224 months — 36.129483 - ¢~ 1086824 months [ 92]

In order to show chaos effects, | have produced hundred {t;, revenue;} sets (each having 24 value
pairs) in which the value for the revenue fluctuates Gaussian with a variance of 2=10°. After
finding the minimum for one hundred times in [ 91 ], one will get one hundred results for the
constants A, B, C, b, and (500 in total). Please note that the numerics can be tricky here,
sometimes it does not converge or it converges to the wrong value. Eventually | have found:
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101334 22.7792 2.867844012 34.0846 12.36089359
101297 23.3435 2.959297818 34.6323 12.23271517
101205 23.1723 2.90076203 34.2905 12.18901258
100.875 22.8913 2.874033965 33.7863 12.02975681
101001 23611 2.904620961 34.5248 1185800748
100.928 23.7697 2.905583078 34.6486 1180684939
100.95 24.0188 2.959359121 34.9032 1178505937
100.821 23.6086 2.85499753 34.3169 117490589
100.759 23.549 2.837507307 34.1506 1173635912
100.815 23.984 2.930523157 34.7587 116938959
100.757 23.8909 2.943184761 34.6325 1164768095
100.833 24.1696 2.949634983 34.8444 1164052205
100.714 24.0922 2.926612271 34.6774 1158203672
100.707 24.3996 2.92753759 34.8936 1153502321
100.625 24.0657 2.940813194 34.6538 1152983633
100.527 24.0874 2.877052057 34.4138 1148457679
100.783 24.651 2.933385743 35.1746 1148014681
100.651 24.3668 2.968222213 34.9737 1145236617
100.577 24.3963 2.935236932 34.8465 1142167926
100.576 245187 2.987937696 35.0693 1141967061
100.728 24.7953 3.008396434 35.5155 114156033
100.525 24.2763 2.905051303 34.6837 1141517328
100.555 245691 2.989456188 35.1076 1135523607
100.456 24.6069 2.968275076 34.8949 113135866
100.725 25.3775 3.080173845 36.0909 1131225558
100.632 25.0484 2.981327943 355 1127791142
100.576 25.0244 3.030725495 35.606 1126288474
100.608 24,9782 2.984041347 35.5207 1126239004
100.521 24.7846 2.935598833 35.185 1125710323
100.678 25.4858 3.062027491 36.1901 112444326
100.3 245135 2.960559427 34.8321 111940215
100.529 25.2987 3.032177467 35.7666 111829804
100.464 25.0951 2.989849461 35.4339 1117197354
100.357 24.8273 2.976305631 35.0681 1116790612
100.462 24.8769 2.980448259 35.309 1116158628
100.458 25.3576 3.037371823 35.76 1114237165
100.434 25.2716 3.008224486 356112 1111896852
100.347 25.0844 2.98836629 35.3416 1111345729
100.359 25.0923 3.069509032 35.6239 1111104938
100.376 249689 2.963964124 35.269 1110328946
100.492 25.702 3.083412474 36.2146 1106824013
100.256 251641 2.987785931 35.295 1104757528
100.514 255937 3.062055619 36.1152 1104106171
100.397 25.7754 3.068199948 36.1452 1100428397
100.493 26.3068 3.104462043 36.7092 10.96766622
100.379 25.9564 3.044232701 36.2084 10.93631238
100.308 25.836 3.107105017 36.2127 10.92826903
100.301 25.7855 3.075304993 36.0382 10.92569001
100.168 254624 2.998626629 35.5899 10.88466177
100.32 26.1014 3.066440568 36.2651 10.88393912
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A b C c
100.125 25.589 2.986724012 35.5242 10.82744411
100.206 26.1264 3.10099635 36.3259 10.81702037
100.279 26.4329 3.088354741 36.5353 10.81435324
100.238 26.2738 3.115061008 36.4822 10.81193291
100.23 26.4236 3.0884692 36.5757 10.76327785
100.198 26.1859 3.072914106 36.3233 10.75367103
100.13 26.0705 3.101823562 36.2515 10.74981
100.118 258775 3.037279569 35.9559 10.74670237
100.248 26.7097 3.142213438 36.8665 10.74334262
100.163 26.3046 3.088841252 36.2687 10.74067709
100.224 26.6676 3.135503938 36.8182 10.72670187
100.239 26.5075 3.107848561 36.747 10.70728009
100.097 26.1941 3.061418171 36.2885 10.70676421
100.214 27.0661 3.132262935 37.187 10.66556314
100.159 26.9657 3.199426663 37.2809 10.57404368
100.15 27.1926 3.15156 1756 37.1988 10.57331697
99.9096 26.3549 3.090349457 36.2952 10.54781112
100.142 27.0245 3.131909776 37.13 10.54400752
100.03 26.8007 3.099055098 36.8435 10.51535768
100.1 27.7691 3.225827263 37.8288 10.46370976
100.047 275398 3.167243105 37.5437 10.424 11557
99.942 27.4494 3.15134326 37.385 10.36411198
100.027 27.7934 3.218072696 37.8697 10.36382197
99.9843 27.7116 3.176236668 37.6499 10.35855088
99.9856 27.6677 3.169391287 37.6396 10.35097035
100.021 28.0246 3.22348762 37.9448 10.34820681
99.8121 27.4308 3.116964077 37.1776 10.27241415
99.9388 279797 3.1775891 37.85 10.26317869
99.9469 28.2631 3.219232986 38.1792 10.25956705
99.7311 27.1229 3.085667384 36.7291 10.24950367
99.8816 27.9069 3.203588019 37.7818 10.24581766
99.7728 275027 3.135789074 37.2151 10.24324637
99.7767 27.7981 3.129635773 37.3691 10.24045615
99.8536 279788 3.191961364 37.835 10.22378851
99.9414 28.6206 3.228462122 38.4718 10.18464766
99.9441 28.7616 3.253714929 38.6183 10.17392322
99.7446 28.7961 3.223726628 38.4328 10.04897872
99.7653 29.3224 3.286997624 39.0803 9.963037132
99.47 28.5205 3.197063817 37.946 9.89070768
99.6566 30.1872 3.349376848 39.8708 9.800462582
99.5118 29.9648 3.270378546 39.3808 9.717795227
99.624 30.5248 3.346720214 40.1496 9.70421551
99.443 29.8721 3.276099869 39.2622 9.70412134
99.4728 30.0193 3.268219507 39.3627 9.697533917
99.4198 29.7946 3.28069997 39.2766 9.674735396
99.5606 30.805 3.357248131 40.315 9.650832867
99.5034 30.5366 3.340046827 40.0746 9.618344106
99.3935 30.2422 3.296924299 39.5614 9.615014807
99.3142 315437 3.397870215 40.8952 9.403091737
99.0788 34.0369 3.480742791 43.1836 8.966358224
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These are the data used for the analysis and lead to the plot of the distribution in figure 23. A

statistical analysis of the data has been summarized in the following table:

revenue; A B b C ¢
average na 100.25217 26.346368 | 3.08311958 36.540725 10.8272137
0.001 0.00449878 0.08124626 | 0.04371311 0.04777995 0.06287702

As discussed, the standard deviation

of the conserved quantity “A” (eventual revenue) is roughly

four times bigger than the original distribution of revenue. All other quantities have to do with the

timely development of the revenue and are not conserved. Not surprisingly their
to 80 times bigger than the variation in input.

values are 40
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5. Solution of diffusion model in marketing

This appendix refers to section 3 of chapter Ill where chaos effects in the diffusion model of
marketing were reported. There are three types of diffusion models in marketing. They are the
exponential diffusion model, the logistic diffusion model, and the semi logistic diffusion model.
They are represented by [ 27 ], [ 28 ], and [ 29 ]. The goal of these diffusion models is to predict
the development of the number of customers, or units sold, or market share, etc. for a newly
introduced product. It is described by a variable N(t) or N;. There are various parameters (a, b, and
M) to describe it. The above-mentioned equations defined the diffusion models. They are
differential equations. In this appendix | will write down these differential equations in their
ordinary form and solve them.

In the exponential diffusion model ([ 27 ]) Nt — N¢.; = dN and dt = 1. Therefore [ 27 ] yields:

dN
—ag-M — . 93
L =aM (a+1)-N [93]

This differential equation is easily solved by separation of variables and integration:

N - t

f an —fdf [94]
a-M—(a+1)-N

No 0

Here N(0) = No. Solving the integral yields:

t_ln(a-M—(a+1)-N0)—ln(a-M—(a+1)-N) [95]
B a+1
This can be easily solved for N:

a*M+ (aNy+ Ny —a-M) - e~ t@+
a+1

N(t) = [96]

This is the most general solution of the exponential diffusion model in marketing. Of course, for
M =1 it is identical with [ 30 ]. It is now straightforward to solve the other diffusion models. For
the logistic diffusion model one gets from [ 28 ] the following differential equation:

dN
E:(b-M—D-N—b-NZ [97]
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This differential equation is easily solved by separation of variables and integration:

d t
(b M—-1)-N—b-N? Of [98]

Solving the integral yields:

_Im(l—b-M+b-No)—In(l—b-M+b-N)+InN — InN,

b-M-—1 [99]
Solving for N yields:
(b-M—1)-eP
N = No g ot 4 (b M= Ny — 1) &' [100]

For M =1 one gets [ 31]. And now | come to the most advanced model, the semi logistic diffusion
model. It is considered the standard diffusion model in marketing. Starting with [ 29 ] gives the
differential equation:

dN
N——=aM+(b-M-a-1)-N—b-N? [101]

Separation of variables and integration yields:

N

t
f dn —de [102]
; a-M+(b-M—a—1)-IV—b-1V2_O
0

Performing the integration yields:

arctanh a—bM + 2bN + 1 — arctanh a—bM+2bNy + 1

Jaz +2a(bM + 1) + (bM — 1)2 Jaz +2a(bM + 1) + (bM — 1)2
Ja%+2a(bM + 1) + (bM — 1)2

t=2 [103]

Here arctanh denotes the inverse function of the hyperbolic tangents tanh x=(e*- e*)/(e*+e™).
Solving this equation for N yields:
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N(t)_\/a2+2a-(b-M+1)+(b-M—1)2
B 2-b

t

. . 2 . . _ 2

[tanh(z \/a +2a(b-M+1)+B-M-1) [104]

a—b-M+2b-Ny+1 )] b-M—a—1

+ arctanh +

Jaz+2ab-M+1)+(b-M—1)2 2b

Though this equation looks slightly clumsy, it behaves pretty ordinary. In order to see it | have
plotted [ 104 ] for M = 100, a = 0.01, and b = 0.02 and various starting values No:

N(t)

N(0) =3

N(0) = 10

or N(0) = 0.01
N(0) = 1

10

Figure 46: N(t) in semi logistic diffusion model (M = 100, a = 0.01, b = 0.02)

It looks pretty ordinary. Of course, one may choose any other values for the constants and starting
values N(0) or No. In marketing it is quite often asked for the gain in customers. This is nothing but
the timely derivative of [ 104 ]. Just for completeness | have calculated it:
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ON a®+2a(b-M+1)+(b-M—1)°
at 4-b
t
- sech? E-\/a2+2a(b-M+1)+(b-M—1)2

[ 105 ]
a—b-M+2b-Ny+1

Jaz+2ab-M+1)+ (b-M—1)2

+ arctanh

Here “sech” is the hyperbolic secant function with sech x = 2/(e*— e™). dN/dt can be plotted for
the same values as in figure 46:

ON
ot

12+

10+

N(0) = 0.01

o
—T—

N(0) = 10 N(0) = 1

é 4‘1 6 8 10
Figure 47: Gain in adaption in semi logistic diffusion model (M = 100, a = 0.01, b = 0.02)
These are the exact solutions of the semi logistic diffusion model. By iterating the map of [ 29 ]
one gets an approximate result which is sometimes good (cf. figure 24 and figure 25) and
sometimes completely unrealistic (cf. figure 26 and figure 27). But even if the iteration gives fair

results, the numerical calculations can be tricky. Standard calculation programs like Excel of
Microsoft are generally far too inaccurate to give true results.
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